Marine Biology

, Volume 155, Issue 1, pp 79–90 | Cite as

Gradients in biodiversity and macroalgal wrack decomposition rate across a macrotidal, ultradissipative sandy beach

  • B. Urban-Malinga
  • T. Gheskiere
  • S. Degraer
  • S. Derycke
  • K. W. Opalinski
  • T. MoensEmail author
Original Paper


The decomposition process of, and the meiobenthic and nematode colonization on, stranded macroalgae were studied along a macrotidal, ultradissipative sandy beach gradient at De Panne (Belgium). The horizontal patterns of macro- and meiofaunal densities and diversity in this beach have been well-documented. Defaunated Fucus detritus was buried in situ in litter bags, 10–15 cm under the sediment surface, at seven stations across the beach profile. Colonization by (meio)fauna and organic matter decomposition rates measured as carbon, nitrogen, phosphorus and dry weight loss, were studied after 10, 21 and 52 days of incubation. Algal detritus was colonized mainly by nematodes dominated by Rhabditidae, Sabatieria, Dorylaimoidea, Monhystera, Paracanthonchus and Daptonema. Organic matter weight loss was slowest at the higher and lower shore and fastest in the mid-shore, in line with the horizontal pattern of nematode diversity in the beach sediment. However, there was no consistent relationship between nematode diversity inside the litter bags and organic matter weight loss, prohibiting an unequivocal conclusion on whether the observed parallel between extant nematode diversity and organic matter decomposition rate indicates a causal relationship or follows from the fact that both are governed by the same set of physicochemical conditions.


Beach Meiofauna Nematode Community Beach Slope Nematode Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



During the period of the field work and part of the sample analyses, the first author was financed by the European Science Foundation through the LINKECOL programme (Exchange Grant LCEE/2001/19). Additional funding was obtained from Ghent University through BOF-projects 0110600002 and 01GZ0705, and from the Fund for Scientific Research, Flanders (FWO) through projects G.0008.02 and 1.5217.04. N. S.D. and T.M. are postdoctoral fellows with the FWO. Ilse De Mesel provided valuable suggestions on the design and implementation of our experiment. Danielle Schram, Bernard Timmerman, Dirk Van Gansbeke and Annick Vankenhove are gratefully acknowledged for invaluable help upon sampling, C/N-, P- and sediment analyses, and meiofauna elutriation.

Supplementary material

227_2008_1009_MOESM1_ESM.doc (194 kb)
Table 1 (ESM). List of nematode genera recorded in the litter bags and their relative abundances (%) after 10, 21 and 52days of incubation. (DOC 194 kb)


  1. Alkemade R, Wielemaker A, Hemminga MA (1992a) Stimulation of decomposition of Spartina anglica leaves by the bacterivorous marine nematode Diplolaimelloides bruciei (Monhysteridae). J Exp Mar Biol Ecol 159:267–278. doi: 10.1016/0022-0981(92)90041-8 CrossRefGoogle Scholar
  2. Alkemade R, Wielemaker A, De Jong SA, Sandee AJJ (1992b) Experimental evidence for the role of bioturbation by the marine nematode Diplolaimella dievengatensis in stimulating the mineralization of Spartina anglica leaves. Mar Ecol Prog Ser 90:149–155. doi: 10.3354/meps090149 CrossRefGoogle Scholar
  3. Alkemade R, Wielemaker A, Hemminga MA (1993) Correlation between nematode abundance and decomposition rate of Spartina anglica leaves. Mar Ecol Prog Ser 99:293–300. doi: 10.3354/meps099293 CrossRefGoogle Scholar
  4. Aller RC, Aller JY (1992) Meiofauna and solute transport in marine muds. Limnol Oceanogr 37:1018–1033CrossRefGoogle Scholar
  5. Armonies W, Reise K (2000) Faunal diversity across a sandy shore. Mar Ecol Prog Ser 196:49–57. doi: 10.3354/meps196049 CrossRefGoogle Scholar
  6. Bongers T, Alkemade R, Yeates GW (1991) Interpretation of disturbance-induced maturity decreases in marine nematode assemblages by means of the maturity index. Mar Ecol Prog Ser 76:135–142. doi: 10.3354/meps076135 CrossRefGoogle Scholar
  7. Brown BC, McLachlan A (1990). Ecology of sandy shores. Elsevier Science Ltd.Google Scholar
  8. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  9. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, United KingdomGoogle Scholar
  10. Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24:327–343. doi: 10.1046/j.1442-9993.1999.00979.x CrossRefGoogle Scholar
  11. Danovaro R, Gambi C, Dell’Anno A, Corinaidesi C, Fraschetti S, Vanreusel A et al (2008) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8. doi: 10.1016/j.cub.2007.11.056 CrossRefGoogle Scholar
  12. Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar Ecol Prog Ser 295:1–20. doi: 10.3354/meps295001 CrossRefGoogle Scholar
  13. Degraer S, Mouton I, De Neve L, Vincx M (1999) Community structure and intertidal zonation of the macrobenthos on a macrotidal, ultra-dissipative sandy beach: summer–winter comparison. Estuaries 22:742–752. doi: 10.2307/1353107 CrossRefGoogle Scholar
  14. De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2003) Influence of bacterivorous nematodes on the decomposition of cordgrass. J Exp Mar Biol Ecol 296:227–242. doi: 10.1016/S0022-0981(03)00338-1 CrossRefGoogle Scholar
  15. De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J (2004) Top-down impact of bacterivorous nematodes on the bacterial community : a microcosm study. Environ Microbiol 6:733–744. doi: 10.1111/j.1462-2920.2004.00610.x CrossRefGoogle Scholar
  16. De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2006) Role of nematodes in decomposition processes: does within-trophic group diversity matter? Mar Ecol Prog Ser 321:157–166. doi: 10.3354/meps321157 CrossRefGoogle Scholar
  17. Dugan JE, Hubbard DM, McCrary MD, Pierson MO (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58S:25–40. doi: 10.1016/S0272-7714(03)00045-3 CrossRefGoogle Scholar
  18. Emmerson M, Huxham M (2004) How can marine ecology contribute to the biodiversity-ecosystem functioning debate? In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning. Synthesis and perspectives. Oxford University Press, pp 139–146Google Scholar
  19. Fenchel T, Jansson BO, Thun W (1967) Vertical and horizontal distribution of the metazoan microfauna and of some physical factors in a sandy beach in the northern part of the Oresund. Ophelia 4:227–243CrossRefGoogle Scholar
  20. Findlay S, Tenore KR (1982) Effect of a free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization. Mar Ecol Prog Ser 8:161–166. doi: 10.3354/meps008161 CrossRefGoogle Scholar
  21. Gerlach SA (1977) Attraction to decaying organisms as a possible cause for patchy distribution of nematodes in a Bermuda beach. Ophelia 16:151–165CrossRefGoogle Scholar
  22. Gerlach SA (1978) Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33:55–69. doi: 10.1007/BF00376996 CrossRefGoogle Scholar
  23. Gessner MO, Inchausti P, Persson L, Raffaelli DG, Giller PS (2004) Biodiversity effects on ecosystem functioning: insights from aquatic systems. Oikos 104:419–422. doi: 10.1111/j.0030-1299.1999.13252.x CrossRefGoogle Scholar
  24. Gheskiere T, Hoste E, Kotwicki L, Degraer S, Vanaverbeke J, Vincx M (2002) The sandy beach meiofauna and free-living nematodes from De Panne (Belgium). Bull Inst R Sci Nat Belg 72:43–49Google Scholar
  25. Gheskiere T, Hoste E, Vanaverbeke J, Vincx M, Degraer S (2004) Horizontal zonation patterns and feeding structure of marine nematode assemblages on a macrotidal, ultra-dissipative sandy beach (De Panne, Belgium). J Sea Res 52:221–226. doi: 10.1016/j.seares.2004.02.001 CrossRefGoogle Scholar
  26. Gheskiere T, Vincx M, Urban-Malinga B, Rossano C, Scapini F, Degraer S (2005) Nematodes from wave-dominated sandy beaches: diversity, zonation patterns and testing of the iso-communities concept. Estuar Coast Shelf Sci 62:365–375. doi: 10.1016/j.ecss.2004.09.024 CrossRefGoogle Scholar
  27. Giller PS, Hillebrand H, Berninger UG, Gessner MO, Hawkins S, Inchausti P et al (2004) Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104:423–436. doi: 10.1111/j.0030-1299.2004.13253.x CrossRefGoogle Scholar
  28. Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater. 18th edition. American Public Health Association.Google Scholar
  29. Griffiths CL, Stenton-Dozey JME, Koop K (1983) Kelp wrack and the flow of energy through a sandy beach ecosystem. In: McLachlan A, Erasmus T (eds) Sandy beaches as ecosystems. Dr W. Junk, The Hague, pp 547–556CrossRefGoogle Scholar
  30. Hector A, Schmid B, Beierkuhnlein C et al (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127. doi: 10.1126/science.286.5442.1123 CrossRefGoogle Scholar
  31. Heip C (1995) Eutrophication and zoobenthos dynamics. Ophelia 41:113–136CrossRefGoogle Scholar
  32. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489Google Scholar
  33. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. doi: 10.2307/1934352 CrossRefGoogle Scholar
  34. Huettel M, Rusch A (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45:185–200Google Scholar
  35. Huettel M, Ziebis W, Forster S (1996) Flow-induced uptake of particulate matter in permeable sediments. Limnol Oceanogr 41:309–322CrossRefGoogle Scholar
  36. Hulings NC, Gray JS (1971) A manual for the study of meiofauna. Smithson Contrib Zool 78:1–83Google Scholar
  37. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586. doi: 10.2307/1934145 CrossRefGoogle Scholar
  38. Inglis G (1989) The colonization and degradation of stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach. J Exp Mar Biol Ecol 125:203–218. doi: 10.1016/0022-0981(89)90097-X CrossRefGoogle Scholar
  39. Jedrzejczak MF (1999) The degradation of stranded carrion on a Baltic Sea sandy beach. Oceanol Stud 28:109–139Google Scholar
  40. Jedrzejczak MF (2002) Spatio-temporal decay ‘hot spots’ of stranded wrack in a Baltic sandy coastal system. Part I. Comparative study of the pattern: 1 type of wrack vs 3 beach sites. Oceanologia 44:491–511Google Scholar
  41. Johnson SR, Ferris JM, Ferris VR (1974) Nematode community structure of forest woodlands: III. Ordinations of taxonomic groups and biomass. J Nematol 6:118–126PubMedPubMedCentralGoogle Scholar
  42. Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes DKA, Brierlay AS, et al (2005) Marine ecology processes, systems, and impacts. Oxford University PressGoogle Scholar
  43. Kinzig AP, Pacala SW, Tilman D (2001) The functional consequences of biodiversity. Princeton University Press, PrincetonGoogle Scholar
  44. Koop K, Griffiths CL (1982) The relative significance of bacteria, meio- and macrofauna on an exposed sandy beach. Mar Biol (Berl) 66:295–300. doi: 10.1007/BF00397035 CrossRefGoogle Scholar
  45. Kotwicki L, De Troch M, Urban-Malinga B, Gheskiere T, Weslawski JM (2005) Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea (The Netherlands, Belgium, France). Helgol Mar Res 59:255–264. doi: 10.1007/s10152-005-0001-8 CrossRefGoogle Scholar
  46. Lillebø AJ, Flindt MR, Pardal MÂ, Marques JC (1999) The effect of macrofauna, meiofauna and microfauna on the degradation of Spartina maritima detritus from a salt marsh area. Acta Oecol 20:249–258. doi: 10.1016/S1146-609X(99)00141-1 CrossRefGoogle Scholar
  47. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi: 10.1126/science.1064088 CrossRefGoogle Scholar
  48. McGwynne LE, McLachlan A, Furstenberg JP (1988) Wrack breakdown on sandy beaches—its impact on interstitial meiofauna. Mar Environ Res 25:213–232. doi: 10.1016/0141-1136(88)90004-9 CrossRefGoogle Scholar
  49. McLachlan A (1980) Intertidal zonation of macrofauna and stratification of meiofauna on high energy sandy beaches in the Eastern Cape, South Africa. Trans R Soc S Afr 44:2213–2230CrossRefGoogle Scholar
  50. McLachlan A (1985) The biomass of macro- and interstitial fauna on clear and wrack-covered beaches in western Australia. Estuar Coast Shelf Sci 21:587–599. doi: 10.1016/0272-7714(85)90059-9 CrossRefGoogle Scholar
  51. McLachlan A (1990) The physical environment. In: McLachlan A, Brown AC (eds) The ecology of sandy shores. Elsevier, Amsterdam, pp 5–39Google Scholar
  52. McLachlan A, Brown A (2006) The ecology of sandy shores, 2nd edition edn. Elsevier, AmsterdamGoogle Scholar
  53. McLachlan A, Jaramillo E (1995) Zonation on sandy beaches. Oceanogr Mar Biol Annu Rev 33:305–335Google Scholar
  54. McLachlan A, Turner I (1994) The interstitial environment of sandy beaches. PSZN I Mar Ecol 15:177–211. doi: 10.1111/j.1439-0485.1994.tb00053.x CrossRefGoogle Scholar
  55. McLachlan A, Dye AH, Harty B (1981) Simulation of the interstitial system of exposed sandy beaches. Estuar Coast Shelf Sci 12:267–278. doi: 10.1016/S0302-3524(81)80124-7 CrossRefGoogle Scholar
  56. Mikola J, Bardgett RD, Hedlund K (2004) Biodiversity, ecosystem functioning and soil decomposer food webs. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning. Synthesis and perspectives. Oxford University Press, pp 169–180Google Scholar
  57. Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77:211–227CrossRefGoogle Scholar
  58. Moens T, Vincx M (2000) Temperature and salinity constraints on the life cycle of two brackish-water nematode species. J Exp Mar Biol Ecol 243:115–135. doi: 10.1016/S0022-0981(99)00113-6 CrossRefGoogle Scholar
  59. Moens T, Verbeeck L, Vincx M (1999) Preservation- and incubation-time induced bias in tracer-aided grazing studies on meiofauna. Mar Biol (Berl) 133:69–77. doi: 10.1007/s002270050444 CrossRefGoogle Scholar
  60. Moens T, dos Santos GAP, Thompson F, Swings J, Fonsêca-Genevois V, De Mesel I (2005) Do nematode mucus secretions affect bacterial growth? Aquat Microb Ecol 40:77–83. doi: 10.3354/ame040077 CrossRefGoogle Scholar
  61. Nicholas WL, Hodda M (1999) The free-living nematodes of a temperate, high energy, sandy beach: faunal composition and variation over space and time. Hydrobiologia 394:113–127. doi: 10.1023/A:1003544115600 CrossRefGoogle Scholar
  62. Olabarria C, Lastra M, Garrido J (2007) Succession of macrofauna on macroalgal wrack of an exposed sandy beach: effects of patch size and site. Mar Environ Res 63:19–40. doi: 10.1016/j.marenvres.2006.06.001 CrossRefGoogle Scholar
  63. Platt HM, Warwick RM (1983) Freeliving marine nematodes. Part I. British Enoplids. In: Kermack DM, Barnes RSK (eds) Synopses of the British fauna (New Series), no. 28. Cambridge University Press, CambridgeGoogle Scholar
  64. Platt HM, Warwick RM (1988) Freeliving marine nematodes. Part II. British Chromadorids. In: Kermack DM, Barnes RSK (eds) Synopses of the British fauna (New Series), No. 38. EJ Brill/Dr W Backhuys, LeidenGoogle Scholar
  65. Pollock LW, Hummon WD (1971) Cyclic changes in interstitital water content, atmospheric exposure and temperature in a marine beach. Limnol Oceanogr 16:522–535CrossRefGoogle Scholar
  66. Riemann F, Helmke E (2002) Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. PSZN I Mar Ecol 23:93–113. doi: 10.1046/j.1439-0485.2002.02765.x CrossRefGoogle Scholar
  67. Shum KT, Sundby B (1996) Organic matter processing in continental shelf sediments—the subtidal pump revisited. Mar Chem 53:81–87. doi: 10.1016/0304-4203(96)00014-X CrossRefGoogle Scholar
  68. Snelgrove PVR (1997) The importance of marine sediment biodiversity in ecosystem processes. Ambio 26:578–583Google Scholar
  69. Snelgrove PVR (1999) Getting to the bottom of marine biodiversity: sedimentary habitats. Bioscience 49:129–138. doi: 10.2307/1313538 CrossRefGoogle Scholar
  70. Souza JRB, Gianuca NM (1995) Zonation and seasonal variation of the intertidal macrofauna of a sandy beach of Prana State, Brazil. Sci Mar 59:103–111Google Scholar
  71. Stenton-Dozey JME, Griffiths CL (1983) The fauna associated with kelp stranded on a sandy beach. In: McLachlan A, Erasmus T (eds) Sandy beaches as ecosystems. Dr W Junk, The Hague, pp 557–568CrossRefGoogle Scholar
  72. Tietjen JH, Lee JJ, Rullman J, Greengart A, Trompeter J (1970) Gnotobiotic culture and physiological ecology of the marine nematode Rhabditis marina Bastian. Limnol Oceanogr 15:535–543CrossRefGoogle Scholar
  73. Underwood AJ (2000) Experimental ecology of rocky intertidal habitats: what are we learning? J Exp Mar Biol Ecol 250:51–76. doi: 10.1016/S0022-0981(00)00179-9 CrossRefGoogle Scholar
  74. Valiela I (1995) Marine ecological processes. Springer-Verlag, New YorkCrossRefGoogle Scholar
  75. Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Wallingfort, pp 187–195Google Scholar
  76. Wall JW, Skene KR, Neilson R (2002) Nematode community and trophic structure along a sand dune succession. Biol Fertil Soils 35:293–301. doi: 10.1007/s00374-002-0478-0 CrossRefGoogle Scholar
  77. Warwick RM (1987) Meiofauna: their role in marine detrital systems. Detritus and microbial ecology in aquaculture. ICLARM conference proceedings 14:282–295Google Scholar
  78. Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine nematodes. Part III. Monhysterids. In: Barnes RSK, Crothers JH (eds) Synopses of the British fauna (New Series), no. 53. Field Studies Council, ShrewsburyGoogle Scholar
  79. Wieser W (1953) Die Beziehung zwishen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark Zool 4:439–484Google Scholar
  80. Zullini A (1976) Nematodes as indicators of river pollution. Nematol Mediterr 4:13–22Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • B. Urban-Malinga
    • 1
  • T. Gheskiere
    • 2
  • S. Degraer
    • 2
    • 3
  • S. Derycke
    • 2
  • K. W. Opalinski
    • 4
  • T. Moens
    • 2
    Email author
  1. 1.Department of Fisheries Oceanography and Marine EcologySea Fisheries InstituteGdyniaPoland
  2. 2.Biology Department, Marine Biology SectionGhent UniversityGhentBelgium
  3. 3.Management Unit of the Mathematical Model of the North SeaRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  4. 4.Centre for Ecological ResearchPolish Academy of ScienceŁomiankiPoland

Personalised recommendations