Advertisement

Marine Biology

, Volume 155, Issue 1, pp 1–10 | Cite as

Comparative phylogeography of marine cladocerans

  • Alan DurbinEmail author
  • Paul D. N. Hebert
  • Melania E. A. Cristescu
Original Paper

Abstract

We examined the population genetics of six species of marine cladocerans, using a ~600 bp fragment of the cytochrome oxidase subunit I gene sequence. Phylogenetic analysis revealed significant intraspecific, semi-allopatric phylogenetic breaks in four out of five species belonging to the Podonidae, supporting an ancient radiation and oceanic expansion for this group. By contrast, Peniliaavirostris (Sididae) displayed no phylogeographic structure across a global sampling, suggesting a recent worldwide expansion. Our results also show a transoceanic distribution of identical or very similar haplotypes in several species of marine Cladocera, which may be interpreted as either natural transport or evidence of recent anthropogenic transport. If the latter is the case, marine cladocerans represent one of the first genetically documented cases of exotic or invasive marine zooplankton, likely an underreported group.

Keywords

Ballast Water Phylogeographic Structure Phylogenetic Structure Macoma Balthica Molecular Clock Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Special thanks to D. Bonnet, J. Colbourne, B. Conner, E.G. Durbin, R. Dooh, M. Galbraith, E. Gorokhova, I. Grigorovich, D. Hardie, C. Hyatt, S. Jonasdottir, T. Klevjer, S. Leandro, M.G. Mazzochi, L. Omer, M. Pfrender, I. Siokou, J. Stzlecki, D.J. Taylor, G. Vlad, S. Vernooij, and C.K. Wong for providing samples. This work was supported by a HHMI Capstone Scholarship to AD, and Natural Sciences and Engineering Research Council grants to MEAC and PDNH.

Supplementary material

227_2008_996_MOESM1_ESM.doc (223 kb)
S1. Numbers of haplotypes collected from different regional and local populations. Collection times varied throughout the year. For two locations, the neritic waters off Portugal (POR) and Vancouver Island, Canada (VAN), several collection sites are treated as a single local population. Other abbreviations for collection localities are as follows: AEG, Aegean Sea; GON, Gulf of Naples; ROM, Romanian coast; NET, Netherlands coast; ENG, English Channel station L4 (Plymouth Marine Laboratory, UK); OSL, Oslo Fjord, Norway; COP, near Copenhagen, Denmark; BAL, Northern Baltic Sea (Landsort Deep); NAR, Narragansett Bay, USA; BOF, Bay of Fundy, Canada; BER, Bering Strait neritic waters; ORE, Oregon coast, USA; TAS, Tasmanian neritic waters; GOT, Gulf of Thailand; SYD, Sydney Harbor, Australia; PER, near Perth, Australia; HON, near Hong Kong, China. (DOC 223 kb)

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Andersen NM, Cheng L, Damgaard J, Sperling FAH (2000) Mitochondrial DNA sequence variation and phylogeography of oceanic insects (Hemiptera: Gerridae: Halobates spp.). Mar Biol 136: 421–430. doi: 10.1007/s002270050701 CrossRefGoogle Scholar
  3. Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn edn. Sinauer Associates, SunderlandGoogle Scholar
  4. Bailey SA, Duggan IC, van Overdijk CDA, Jenkins P, MacIsaac HJ (2003) Viability of invertebrate diapason eggs collected from residual ballast sediment. Limnol Oceanogr 48:1701–1710CrossRefGoogle Scholar
  5. Bollens SM, Cordell JR, Avent S, Hooff R (2002) Zooplankton invasions: a brief review, plus two case studies from the Pacific Ocean. Hydrobiologia 480:87–110. doi: 10.1023/A:1021233018533 CrossRefGoogle Scholar
  6. Bryan BB, Grant GC (1974) The occurrence of Podon intermedius (Cladocera, Crustacea) in Chesapeake Bay, a new distributional record. Chesap Sci 15:120–121. doi: 10.2307/1351274 CrossRefGoogle Scholar
  7. Bucklin A, Frost BW, Bradford-Grieve J, Allen LD, Copley NJ (2003) Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol 142:333–343CrossRefGoogle Scholar
  8. Cattley JG, Harding JP (1949) Penilia, a cladoceran normally found off tropical and sub-tropical coasts, recorded in North Sea plankton. Nature 164:238–239. doi: 10.1038/164238a0 CrossRefGoogle Scholar
  9. Caudill CC, Bucklin A (2004) Molecular phylogeography and evolutionary history of the estuarine copepod, Acartia tonsa, on the Northwest Atlantic coast. Hydrobiologia 511:91–102. doi: 10.1023/B:HYDR.0000014032.05680.9d CrossRefGoogle Scholar
  10. Colton JB Jr (1985) Eastward extension of the distribution of the marine cladoceran Penilia avirostris in the Northwest Atlantic: a case of ecesis? J Northwest Atl Fish Sci 6:141–148CrossRefGoogle Scholar
  11. Cristescu MEA, Hebert PDN (2002) Phylogeny and adaptive radiation in the Onychopoda (Crustacea, Cladocera): evidence from multiple gene sequences. J Evol Biol 15:838–849. doi: 10.1046/j.1420-9101.2002.00466.x CrossRefGoogle Scholar
  12. Cronin TM, Dowsett HJ (1996) Biotic and oceanographic response to the Pliocene closing of the Central American Isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 76–104Google Scholar
  13. Darling KF, Wade CM, Stewart IA, Kroon D, Dingle R, Leigh Brown AJ (2000) Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405:43–47. doi: 10.1038/35011002 CrossRefGoogle Scholar
  14. Da Rocha CEF (1985) The occurrence of Pleopis schmackeri (Poppe) in the southern Atlantic and other marine cladocerans on the Brazilian coast. Crustaceana 49:202–204CrossRefGoogle Scholar
  15. De Meester L, Gomez A, Okamura B, Schwenk K (2002) The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologia 23:121–135. doi: 10.1016/S1146-609X(02) 01145-1 CrossRefGoogle Scholar
  16. De Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J (1999) Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA 96:2864–2868. doi: 10.1073/pnas.96.6.2864 CrossRefGoogle Scholar
  17. Dumont HJ (1998) The Caspian cradle. In: Dumont HJF (ed) The predatory Cladocera (Onychopoda: Podonidae, Polyphemidae, Cercopagidae) and Leptodoridae of the world. Guides to the identification of the microinvertebrates of the continental waters of the world, Leiden, pp 9–15Google Scholar
  18. Dumont HJ (2000) Endemism in the Ponto-Caspian fauna, with special emphasis on the Onychopoda (Crustacea). In: Rossiter A, Kawanabe H (eds) Advances in ecological research. ancient lakes: biodiversity ecology and evolution. Academic Press, London, pp 181–196CrossRefGoogle Scholar
  19. Egborge ABM (1987) Salinity and distribution of Cladocera in Warri River, Nigeria. Hydrobiologia 145:159–167. doi: 10.1007/BF02530276 CrossRefGoogle Scholar
  20. Egloff DA, Fofanoff PW, Onbe T (1997) Reproductive biology of marine cladocerans. Adv Mar Biol 31:79–167CrossRefGoogle Scholar
  21. Elkin CJ, Richardson PM, Fourcade HM, Hammon NM, Pollard MJ, Predki PF et al (2001) High-throughput plasmid purification for capillary sequencing. Genome Res 11:1269–1274. doi: 10.1101/gr.167801 CrossRefGoogle Scholar
  22. Excoffier LG, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50CrossRefGoogle Scholar
  23. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  24. Goetze E (2003) Cryptic speciation on the high seas: global phylogenetics of the copepod family Eucalanidae. Proc R Soc Lond B 270:2321–2331. doi: 10.1098/rspb.2003.2505 CrossRefGoogle Scholar
  25. Goetze E (2005) Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer. Evolution 59:2378–2398PubMedGoogle Scholar
  26. Gollasch S, Rosenthal H, Botnen H, Hamer J, Laing I, Leppakoski E et al (2000) Fluctuations of zooplankton taxa in ballast water during short-term and long-term ocean-going voyages. Int Rev Hydrobiol 85:597–608. doi: 10.1002/1522-2632(200011) 85:5/6<597::AID-IROH597>3.0.CO;2-4 CrossRefGoogle Scholar
  27. Harris SA (2005) Thermal history of Arctic Ocean environs adjacent to North America during the last 3.5 million Ma and a possible mechanism for the cause of the cold events. Progr Phys Oceanogr 29: 218–237. doi: 10.1191/0309133305pp444ra Google Scholar
  28. Hebert PDN, Cristescu MEA (2002) Genetic perspectives on invasions: the case of the Cladocera. Can J Fish Aquat Sci 59:1229–1234. doi: 10.1139/f02-091 CrossRefGoogle Scholar
  29. Hebert PDN, Witt JDS, Adamowicz S.J. (2003) Phylogeographical patterning in Daphnia ambigua: regional divergence and intercontinental cohesion. Limnol Oceanogr 48:261–268CrossRefGoogle Scholar
  30. Knowlton N, Weight LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B 265:2257–2263. doi: 10.1098/rspb.1998.0568 CrossRefGoogle Scholar
  31. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi: 10.1093/bib/5.2.150 CrossRefGoogle Scholar
  32. Lee CE (2000) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution 54:2014–2027. doi: 10.1111/j.0014-3820.2000.tb01245.x CrossRefGoogle Scholar
  33. Lochhead JH (1954) On the distribution of a marine cladocera, Penilia avirostris Dana (Crustacea, Branchiopoda), with a note on its reported bioluminescence. Biol Bull Woods Hole 107: 92–105. doi: 10.2307/1538633 CrossRefGoogle Scholar
  34. Luttikhuizen PC, Drent J, Baker AJ (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12:2215–2229. doi: 10.1046/j.1365-294X.2003.01872.x CrossRefGoogle Scholar
  35. Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  36. Marincovich L, Gladenkov AY (1999) Evidence for an early opening of the Bering Strait. Nature 397:149–151. doi: 10.1038/16446 CrossRefGoogle Scholar
  37. Montresor M, Lovejoy C, Orsini L, Procaccini G, Roy S (2003) Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol 26:186–194Google Scholar
  38. Panov VE, Krylov PI, Riccardi N (2004) Role of diapause in dispersal and invasion success by aquatic invertebrates. J Limnol 63:56–59CrossRefGoogle Scholar
  39. Peijnenburg KTCA, Breeuwer JAJ, Pierrot-Bults AC, Menken SBJ (2004) Phylogeography of the planktonic chaetognath Sagitta setosa reveals isolation in European seas. Evolution 58:1472–1487CrossRefGoogle Scholar
  40. Poore RZ, Phillips RL, Rieck HJ (1993) Paleoclimate record for Northwind Ridge, Western Arctic Ocean. Paleoceanography 8:149–159. doi: 10.1029/93PA00146 CrossRefGoogle Scholar
  41. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601. doi: 10.1080/106351501750435121 CrossRefGoogle Scholar
  42. Rivier IK (1998) The predatory Cladocera (Onychopoda: Podonidae, Polyphemidae, Cercopagidae) and Leptodorida of the world. In: Dumont HJF (ed) Guides to the identification of the microinvertebrates of the continental waters of the world. Backhuys Publishers, LeidenGoogle Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefGoogle Scholar
  44. Roy MS, Sponer R (2002) Evidence of a human-mediated invasion of the tropical western Atlantic by the ‘world’s most common brittlestar’. Proc R Soc Lond B 269:1017–1023. doi: 10.1098/rspb.2002.1977 CrossRefGoogle Scholar
  45. Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu Rev Ecol Syst 31:481–531. doi: 10.1146/annurev.ecolsys.31.1.481 CrossRefGoogle Scholar
  46. Schwenk K, Sand A, Boersma M, Brehm M, Mader E, Offerhaus D, Spaak P (1998) Genetic markers, genealogies and biogeographic patterns in the cladocera. Aquat Ecol 32:37–51. doi: 10.1023/A:1009939901198 CrossRefGoogle Scholar
  47. Schwenk K, Posada D, Hebert PDN (2000) Molecular systematics of European Hyalodaphnia: the role of contemporary hybridization in ancient species. Proc R Soc Lond B 267:1833–1842. doi: 10.1098/rspb.2000.1218 CrossRefGoogle Scholar
  48. Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  49. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  50. Taniguchi M, Kanehisa T, Sawabe T, Christen R, Ikeda T (2004) Molecular phylogeny of Neocalanus copepods in the subarctic Pacific Ocean with notes on non-geographical genetic variations for Neocalanus cristatus. J Plankton Res 26:1249–1255. doi: 10.1093/plankt/fbh115 CrossRefGoogle Scholar
  51. Tang KW, Chen QC, Wong CK (1995) Distribution and biology of marine cladocerans in the coastal waters of southern China. Dev Hydrobiol 107:99–107. doi: 10.1007/BF00032001 CrossRefGoogle Scholar
  52. Tavaré S (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology—DNA sequence analysis. Am Math Soc, Providence, RI, pp. 57–86Google Scholar
  53. Taylor DJ, Finston TL, Hebert PDN (1998) Biogeography of a widespread freshwater crustacean: pseudocongruence and cryptic endemism in the North American Daphnia laevis complex. Evolution 52:1648–1670. doi: 10.2307/2411338 CrossRefGoogle Scholar
  54. Waddell PJ, Steel MA (1997) General time-reversible distances with unequal rates across sites: mixing Γ and inverse Gaussian distributions with invariant sites. Mol Phylogenet Evol 8:398–414. doi: 10.1006/mpev.1997.0452 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Alan Durbin
    • 1
    Email author
  • Paul D. N. Hebert
    • 2
  • Melania E. A. Cristescu
    • 3
  1. 1.Department of Marine SciencesUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  3. 3.Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorCanada

Personalised recommendations