Marine Biology

, Volume 153, Issue 6, pp 1219–1232 | Cite as

Cloning and expression of a tauropine dehydrogenase from the marine sponge Suberites domuncula

  • Bruna Plese
  • Vladislav A. Grebenjuk
  • Heinz C. Schröder
  • Hans J. Breter
  • Isabel M. Müller
  • Werner E. G. MüllerEmail author
Research Article


The cDNA sequence coding for tauropine dehydrogenase (TaDH) [belonging to the family of opine dehydrogenases] has been determined. Using the demosponge Suberites domuncula, we describe for the first time the tauropine dehydrogenase gene (of length 2,992 kb) from a eukaryote, consisting of two introns flanked by three exons. Moreover, two allelic variants have been identified, which are present in the different specimens either in a homozygotic or in a heterozygotic way; the data suggest an intermediary type of heritance. Phylogenetic analyses indicate that S. domuncula TaDH is only distantly related to the opine dehydrogenases from marine invertebrates; rather it comprises high sequence similarity to bacterial ornithine cyclodeaminases (OCD). In addition, expression studies revealed that the steady-state level of TaDH dropped drastically in animals, which had been exposed to elevated aeration. Antibodies raised against the recombinant sponge TaDH were used to demonstrate that S. domuncula expresses high levels of this enzyme in almost all cells. If tissue samples were kept under additional aeration no immuno-signals could be identified. A strong accumulation of the enzyme was seen around the bacteria, existing in bacteriocytes, indicating that under aerobic conditions the bacteria might produce taurine. These data suggest involvement of the sponge TaDH in the final step of the glycolytic pathway, more specifically, in regeneration of NAD(+) under anaerobic conditions. Furthermore, potential mutual influences between bacteria and sponge are discussed, claiming a horizontal gene transfer of the gene from a bacterium to the sponge.


Sponge Taurine Ornithine Methanosaeta Sponge Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the European Commission, the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung (cooperation project: WTZ BRA—Health of marine ecosystems; project: Center of Excellence BIOTECmarin) and the International Human Frontier Science Program (RG-333/96-M).


  1. Baldwin J, Wells RMG, Ryder JM (1992) Tauropine and d-lactate as metabolic stress indicators during transport and storage of live Paua, (New Zealand Abalone) (Haliotis iris). J Food Sci 57:280–282CrossRefGoogle Scholar
  2. Behrens JW, Elias JP, Taylor HH, Weber RE (2002) The archaeogastropod mollusk Haliotis iris: tissue and blood metabolites and allosteric regulation of haemocyanine function. J Exp Biol 205:253–253PubMedGoogle Scholar
  3. Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468PubMedCrossRefGoogle Scholar
  4. Böhm M, Müller IM, Müller WEG, Gamulin V (2000) The mitogen-activated protein kinase p38 pathway is conserved in metazoans: cloning and activation of p38 of the SAPK2 subfamily from the sponge Suberites domuncula. Biol Cell 29:95–104CrossRefGoogle Scholar
  5. Böhm M, Hentschel U, Friedrich A, Fieseler L, Steffen R, Gamulin V, Müller IM, Müller WEG (2001) Molecular response of the sponge Suberites domuncula to bacterial infection. Mar Biol 139:1037–1045CrossRefGoogle Scholar
  6. Breter HJ, Grebenjuk VA, Skorokhod A, Müller WEG (2003) Approaches for a sustainable use of the bioactive potential in sponges: analysis of gene clusters, differential display of mRNA and DNA chips. In: Müller WEG (ed) Marine molecular biotechnology. Springer, Berlin, pp 199–230Google Scholar
  7. Butterfield NJ (2007) Macroevolution and macroecology trough deep time. Palaeontology 50:41–55CrossRefGoogle Scholar
  8. Chien CC, Leadbetter ER, Godchaux W (1997) Aminotransferase activity in anaerobic bacteria. Appl Environ Microbiol 63:3021–3024PubMedGoogle Scholar
  9. Cheng Z, Sun L, He J, Gong W (2007) Crystal structure of human micro-crystallin complexed with NADPH. Protein Sci 16:329–335PubMedCrossRefGoogle Scholar
  10. Clark JM (1988) Novel non-templated nucleotide addition catalyzed by procaryotic and eukaryotic DNA polymerases. Nucleic Acid Res 16:9677–9686PubMedCrossRefGoogle Scholar
  11. Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (2000) Current protocols in protein science. Wiley, Chichester, pp 2.0.1–2.8.17Google Scholar
  12. Da Lage JL, Feller G, Janecek S (2004) Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the alpha-amylase model. Cell Mol Life Sci 61:97–109PubMedCrossRefGoogle Scholar
  13. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503PubMedCrossRefGoogle Scholar
  14. Don R, Cox P, Wainwright B, Baker K, Mattick J (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008PubMedCrossRefGoogle Scholar
  15. Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311PubMedCrossRefGoogle Scholar
  16. Eapen S, George L (1994) Agrobacterium tumefaciens mediated gene transfer in peanut (Arachis hypogaea L.). Plant Cell Rep 13:582–586CrossRefGoogle Scholar
  17. Eisenberg E, Levanon EY (2003) Human housekeeping genes are compact. Trends Genet 19:362–365PubMedCrossRefGoogle Scholar
  18. Endo N, Kan-no N, Nagahisa E (2007) Purification, characterization, and cDNA cloning of opine dehydrogenases from the polychaete rockworm Marphysa sanguinea. Comp Biochem Physiol B 14:293–307CrossRefGoogle Scholar
  19. Felsenstein J (1993) PHYLIP, version 3.5. University of Washington, SeattleGoogle Scholar
  20. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732PubMedCrossRefGoogle Scholar
  21. Gäde G, Grieshaber MK (1986) Pyruvate reductase catalyze the formation of lactate and opines in anaerobic invertebrates. Comp Biochem Physiol B 83:255–272CrossRefGoogle Scholar
  22. Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17:352–436PubMedGoogle Scholar
  23. Gatti S, Brey T, Müller WEG, Heilmayer O, Holst G (2002) Oxygen microoptodes: a new tool for oxygen measurements in aquatic animal ecology. Mar Biol 140:1075–1085CrossRefGoogle Scholar
  24. Grieshaber MK, Hardewig I, Kreutzer U, Pörtner H-O (1994) Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 125:43–147PubMedGoogle Scholar
  25. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, OxfordGoogle Scholar
  26. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440PubMedCrossRefGoogle Scholar
  27. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball earth. Science 281:1342–1346PubMedCrossRefGoogle Scholar
  28. Hu G (1993) DNA polymerase-catalyzed addition of nontemplated extra nucleotides to the 3′ end of a DNA fragment. DNA Cell Biol 12:763–770PubMedGoogle Scholar
  29. Huxtable RJ (1986) Taurine and the oxidative metabolism of cysteine. In: Huxtable RJ (ed) Biochemistry of sulfur. Plenum, New York, pp 11–62Google Scholar
  30. Ikeda K, Yamada H, Tanaka S (1963) Bacterial degradation of taurine. J Biochem 54:312–316PubMedGoogle Scholar
  31. Jacobson JG, Smith LH (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511Google Scholar
  32. Kan-no N, Sato M, Nagahisa E, Sato Y (1997) Purification and characterization of tauropine dehydrogenase from the marine sponge Halichondria japonica kadota (demospongia). Fish Sci 63:414–420Google Scholar
  33. Kan-no N, Matsu-ura H, Jikihara S, Yamamoto T, Endo N, Moriyama S, Nagahisa E, Sato M (2005) Tauropine dehydrogenase from the marine sponge Halichondria japonica is a homolog of ornithine cyclodeaminase/mu crystalline. Comp Biochem Physiol B 141:331–339PubMedCrossRefGoogle Scholar
  34. Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209PubMedCrossRefGoogle Scholar
  35. Kim RY, Gasser R, Wistow GJ (1992) Mu-crystallin is a mammalian homologue of Agrobacterium ornithine cyclodeaminase and is expressed in human retina. Proc Nat Acad Sci USA 89:9292–9296PubMedCrossRefGoogle Scholar
  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  37. LePennec G, Perović S, Ammar MSA, Grebenjuk VA, Steffen R, Müller WEG (2003) Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron. J Biotechnol 100:93–108CrossRefGoogle Scholar
  38. Livingstone DR (1991) Origins and evolution of pathways of anaerobic metabolism in the animal kingdom. Am Zool 31:522–534Google Scholar
  39. Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118:9–17PubMedCrossRefGoogle Scholar
  40. Müller WEG, Grebenjuk VA, Le Pennec G, Schröder HC, Brümmer F, Hentschel U, Müller IM, Breter H-J (2004a) Sustainable production of bioactive compounds by sponges: cell culture and gene cluster approach. Mar Biotechnol 6:105–117PubMedCrossRefGoogle Scholar
  41. Müller WEG, Grebenjuk VA, Thakur NL, Thakur AN, Batel R, Krasko A, Müller IM, Breter HJ (2004b) Oxygen-controlled bacterial growth in the sponge Suberites domuncula: towards a molecular understanding of the symbiotic relationships between sponge and bacteria. Appl Environ Microbiol 70:2332–2341PubMedCrossRefGoogle Scholar
  42. Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004c) The bauplan of the Urmetazoa: the basis of the genetic complexity of Metazoa using the siliceous sponges [Porifera] as living fossils. Int Rev Cytol 235:53–92PubMedCrossRefGoogle Scholar
  43. Müller WEG, Schröder HC, Wrede P, Kaluzhnaya OV, Belikov SI (2006) Speciation of sponges in Baikal-Tuva region (an outline). J Zool Syst Evol Res 44:105–117CrossRefGoogle Scholar
  44. Müller WEG, Li J, Schröder HC, Qiao L, Wang X (2007) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosci Disc 4:385–416Google Scholar
  45. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323PubMedCrossRefGoogle Scholar
  46. Nicholas KB, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Version 1.1.004. Distributed by the author; available on the internet∼ketchup/genedoc.shtml
  47. Osinga R, Belarbi EH, Grima EM, Tramper J, Wijffels RH (2003) Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor. J Biotechnol 100:141–144PubMedCrossRefGoogle Scholar
  48. Paracer S, Ahmadjian V (2000) Symbiosis: an introduction to biological associations. Oxford University Press, OxfordGoogle Scholar
  49. Perović-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V, Müller IM, Müller WEG (2004) A (1→3)-β-d-glucan recognition protein from the sponge Suberites domuncula: mediated activation of fibrinogen-like protein and epidermal growth factor gene expression. Eur J Biochem 271:1924–1937PubMedCrossRefGoogle Scholar
  50. Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993) S-type lectins occur also in invertebrates: unusual subunit composition and high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiol 3:179–184CrossRefGoogle Scholar
  51. Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538PubMedCrossRefGoogle Scholar
  52. Proksch P (1994) Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon 32:639–655PubMedCrossRefGoogle Scholar
  53. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Ann Rev Microbiol 57:369–394CrossRefGoogle Scholar
  54. Rot C, Goldfarb I, Ilan M, Huchon D (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:71PubMedCrossRefGoogle Scholar
  55. Schindler U, Sans N, Schroder J (1989) Ornithine cyclodeaminase from octopine Ti plasmid Ach5: identification, DNA sequence, enzyme properties, and comparison with gene and enzyme from nopaline Ti plasmid C58. J Bacteriol 171:847–854PubMedGoogle Scholar
  56. Schröder HC, Grebenjuk VA, Binder M, Skorokhod A, Batel R, Hassanein H, Müller WEG (2004) Functional molecular biodiversity assessment of the immune status of two sponge populations (Suberites domuncula) on the molecular level. Mar Ecol 25:93–108CrossRefGoogle Scholar
  57. Schütze J, Skorokhod A, Müller IM, Müller WEG (2001) Molecular evolution of metazoan extracellular matrix: cloning and expression of structural proteins from the demosponges Suberites domuncula and Geodia cydonium. J Mol Evol 53:402–415PubMedCrossRefGoogle Scholar
  58. Simpson W, Allen K, Awapara J (1959) Free amino acids in some aquatic invertebrates. Biol Bull Mar Biol Lab Woods Hole 117:371–381CrossRefGoogle Scholar
  59. Soto MJ, Zorzano A, Garcia-Rodriguez FM, Mercado-Blanco J, Lopez-Lara IM, OlivaresJ, Toro N (1994) Identification of a novel Rhizobium meliloti nodulation efficiency nfe gene homolog of Agrobacterium ornithine cyclodeaminase. Mol Plant Microb Interact 7:703–707Google Scholar
  60. Thakur NL, Hentschel U, Krasko A, Pabel CT, Anil AC, Müller WEG (2003) Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for the defense. Aquat Microbiol Ecol 31:77–83CrossRefGoogle Scholar
  61. Thakur NL, Anil AC, Müller WEG (2004) Culturable epibacteria of the marine sponge Ircinia fusca: temporal variations and their possible role in the epibacterial defense of the host. Aquat Microbiol Ecol 37:295–304CrossRefGoogle Scholar
  62. Thakur NL, Perović-Ottstadt S, Batel R, Korzhev M, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against gram-positive bacteria: induction of lysozyme and AdaPTin. Mar Biol 146:271–282CrossRefGoogle Scholar
  63. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedCrossRefGoogle Scholar
  64. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  65. Ulrich K (1994) Comparative animal biochemistry. Springer, BerlinGoogle Scholar
  66. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the narine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444PubMedCrossRefGoogle Scholar
  67. Wehrl M, Steinert M, Hentschel U (2007) Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol 53:355–365PubMedCrossRefGoogle Scholar
  68. Welborn JR, Manahan DT (1995) Taurine metabolism in larvae of marine molluscs (Bivalvia, Gastropoda). J Exp Biol 198:1791–1799PubMedGoogle Scholar
  69. Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway: induction of a perforin-like molecule. J Biol Chem 280:27949–27959PubMedCrossRefGoogle Scholar
  70. Wiens M, Korzhev M, Perović-Ottstadt S, Luthringer B, Brandt D, Klein S, Müller WEG (2007) Toll-like receptors are part of the innate immune defense system of sponges (Demospongiae: Porifera). Mol Biol Evol 24:792–804PubMedCrossRefGoogle Scholar
  71. Worning P, Jensen LJ, Nelson KE, Brunak S, Ussery DW (2000) Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima. Nucleic Acids Res 28:706–709PubMedCrossRefGoogle Scholar
  72. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bruna Plese
    • 1
  • Vladislav A. Grebenjuk
    • 1
  • Heinz C. Schröder
    • 1
  • Hans J. Breter
    • 1
  • Isabel M. Müller
    • 1
  • Werner E. G. Müller
    • 1
    Email author
  1. 1.Institut für Physiologische ChemieAbteilung Angewandte Molekularbiologie, UniversitätMainzGermany

Personalised recommendations