Marine Biology

, Volume 153, Issue 6, pp 1165–1171 | Cite as

Epithelial immunity in a marine invertebrate: a cytolytic activity from a cuticular secretion of the American horseshoe crab, Limulus polyphemus

  • John M. HarringtonEmail author
  • Matthias Leippe
  • Peter B. Armstrong
Research Article


The cuticle of the American horseshoe crab, Limulus polyphemus, is largely free of the macroscopic epibionts that rapidly colonize most solid surfaces exposed to sea water. Here, we describe a viscous surface secretion that coats the carapace of the horseshoe crab. We report methods for stimulating production of the substance, identify hemolytic and liposome-permeabilizing activities and provide a partial biochemical characterization. We propose that this secretion functions as an anti-fouling agent protecting the chitinized epithelium of the cuticle from colonization by deleterious epibionts.


Hemolytic Activity Hemocyte Horseshoe Crab Cytolytic Activity Marine Biological Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by grant 0344360 from the National Science Foundation (to P.B.A.) and SFB 617 from the German Research Council (to M.L.). All of the experiments performed in this study comply with the current laws of the United States of America.


  1. Armstrong PB (2003) Internal defense against pathogenic invasion: the immune system. In: Shuster CN, Barlow RB, Brockman HJ (eds) The American horseshoe crab. Harvard University Press, Cambridge, pp 288–309Google Scholar
  2. Armstrong PB, Armstrong MT (2003) The decorated clot: binding of agents of the innate immune system to the fibrils of the Limulus blood clot. Biol Bull 205:201–203PubMedCrossRefGoogle Scholar
  3. Armstrong PB, Armstrong MT, Quigley JP (1993) Involvement of α2-macroglobulin and C-reactive protein in a complement-like hemolytic system in the arthropod, Limulus polyphemus. Mol Immunol 30:929–934PubMedCrossRefGoogle Scholar
  4. Armstrong PB, Mangel WF, Wall JS, Hainfield JF, Van Holde KE, Ikai A, Quigley JP (1991) Structure of α2-macroglobulin from the arthropod Limulus polyphemus. J Biol Chem 266:2526–2530PubMedGoogle Scholar
  5. Armstrong PB, Quigley JP (1987) Limulus α2-macroglobulin. First evidence in an invertebrate for a protein containing an internal thiol ester bond. Biochem J 248:703–707PubMedGoogle Scholar
  6. Armstrong PB, Rossner MT, Quigley JP (1985) An α2-macroglobulinlike activity in the blood of chelicerate and mandibulate arthropods. J Exp Zool 236:1–9PubMedCrossRefGoogle Scholar
  7. Armstrong PB, Swarnakar S, Srimal S, Misquith S, Hahn EA, Aimes RT, Quigley JP (1996) A cytolytic function for a sialic acid-binding lectin that is a member of the pentraxin family of proteins. J Biol Chem 271:14717–14721PubMedCrossRefGoogle Scholar
  8. Blum H, Beier H, Gross HJ (1987) Improved silver staining plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99CrossRefGoogle Scholar
  9. Boulanger N, Munks RJL, Hamilton JV, Vovelle F, Brun R, Lehane MJ, Bulet P (2002) Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect stomoxys calcitrans. J Biol Chem 277:49921–49926PubMedCrossRefGoogle Scholar
  10. Decker H, Ryan M, Jaenicke E, Terwilliger N (2001) SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J Biol Chem 276:17796–17799PubMedCrossRefGoogle Scholar
  11. Diamond G, Legarda D, Ryan LK (2000) The innate immune response of the respiratory epithelium. Immunol Rev 173:27–38PubMedCrossRefGoogle Scholar
  12. Fahrenbach WH (1999). In: Harrison FW, Foelix RR (eds) Microscopic anatomy of invertebrates: chelicerate arthropoda. Wiley-Liss, New York, pp 21–115Google Scholar
  13. Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605PubMedCrossRefGoogle Scholar
  14. Grant D (2001) Living on Limulus. In: Tanacredi JT (ed) Limulus in the limelight: a species 350 million yeas in the Makingand in peril? Kluwer Academic/Plenum Publishers, New York, pp 135–145Google Scholar
  15. Harlow E, Lane D (1988) Anitbodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  16. Harrington JM, Armstrong PB (1999) A cuticular secretion of the horseshoe crab, Limulus polyphemus: a potential anti-fouling agent. Biol Bull 197:274–275CrossRefGoogle Scholar
  17. Harrington JM, Armstrong PB (2000) Initial characterization of a potential anti-fouling system in the American horseshoe crab, Limulus polyphemus. Biol Bull 199:189–190PubMedCrossRefGoogle Scholar
  18. Harrington JM, Armstrong PB (2003) A liposome-permeating activity from the surface of the carapace of the American horseshoe crab, limulus polyphemus. Biol Bull 205:205–206PubMedCrossRefGoogle Scholar
  19. Iwanaga S, Kawabata S (1998) Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front Biosci 3:D973–984PubMedGoogle Scholar
  20. Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2:256–267PubMedCrossRefGoogle Scholar
  21. Law SKA, Reid KBM (1995) Complement. Oxford University Press, New YorkGoogle Scholar
  22. Leibovitz L, Lewbart GA (2003) Diseases and symbionts: vulnerability despite tough shells. In: Shuster CN, Barlow RB, Brockman HJ (eds) The American horseshoe crab. Harvard University Press, Cambridge, pp 245–237Google Scholar
  23. Nagai T, Osaki T, Kawabata S (2001) Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 276:27166–27170PubMedCrossRefGoogle Scholar
  24. Nochi T, Kiyono H (2006) Innate immunity in the mucosal immune system. Curr Pharm Des 12:4203–4213PubMedCrossRefGoogle Scholar
  25. Quigley JP, Armstrong PB (1985) A homologue of α2-macroglobulin purified from the hemolymph of the horseshoe crab Limulus polyphemus. J Biol Chem 260:12715–12719PubMedGoogle Scholar
  26. Quigley JP, Ikai A, Arakawa H, Osada T, Armstrong PB (1991) Reaction of proteinases with α2-macroglobulin from the American horseshoe crab, Limulus. J Biol Chem 266:19426–19431PubMedGoogle Scholar
  27. Salzman NH, Underwood MA, Bevins CL (2007) Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Sem Immunol 19:70–83CrossRefGoogle Scholar
  28. Scherrer R, Gerhardt P (1971) Molecular sieving by the Bacillus megaterium cell wall and protoplast. J Bacteriol 107:718–735PubMedGoogle Scholar
  29. Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137PubMedCrossRefGoogle Scholar
  30. Schroder JM (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci 56:32–46PubMedCrossRefGoogle Scholar
  31. Shuster CN, Sekiguchi K (2003) Growing up takes about ten years and eighteen stages. In: Shuster CN, Barlow RB, Brockman HJ (eds) The American horseshoe crab. Harvard University Press, Cambridge, pp 103–132Google Scholar
  32. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  33. Stagner JI, Redmond JR (1975) The immunological mechanisms of the horseshoe crab, Limulus polyphemus. Mar Fish Rev 37:11–19Google Scholar
  34. Swarnakar S, Asokan R, Quigley JP, Armstrong PB (2000) Binding of α2-macroglobulin and limulin: regulation of the plasma haemolytic system of the American horseshoe crab, Limulus. Biochem J 347(Pt 3):679–685PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • John M. Harrington
    • 1
    • 2
    Email author
  • Matthias Leippe
    • 2
    • 3
  • Peter B. Armstrong
    • 1
    • 2
  1. 1.Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisUSA
  2. 2.Marine Biological LaboratoryWoods HoleUSA
  3. 3.Zoological Institute of the University of KielKielGermany

Personalised recommendations