Advertisement

Marine Biology

, Volume 153, Issue 6, pp 1023–1035 | Cite as

Food resource use in a tropical eastern Pacific tidepool fish assemblage

  • Gustavo Adolfo Castellanos-Galindo
  • Alan GiraldoEmail author
Research Article

Abstract

An understanding of the trophic organization patterns of tropical littoral fish assemblages can contribute to the knowledge of key ecosystem processes while simultaneously assisting to validate large-scale biogeographic patterns (i.e. latitudinal patterns in fish herbivory). In the present study, the diets of eight fish species inhabiting the tide pools of a rocky shore on the western coast of Colombia (tropical eastern Pacific) are documented. A total of 17 prey items were identified, with a major representation (average percent by weight) of crabs and macroalgae items in the guts of all species. Small crustacean prey items (crabs, shrimps, copepods and amphipods) dominated the diets of most species, but consumption of macroalgae and diatoms by a significant number of species was also observed. We identified four significant trophic guilds within the assemblage using multivariate techniques (cluster analysis and nMDS): an omnivorous guild, consisting of Malacoctenus zonifer and the smallest size class of Bathygobius ramosus; a small-prey carnivorous guild, consisting of the intermediate size classes of B. ramosus and the smallest size class of Gobiesox adustus; a large-prey carnivorous guild, consisting of both largest size classes of B. ramosus and G. adustus; and an herbivorous guild consisting of Abudefduf concolor, A. troschelii and Chaenomugil proboscideus. The diet of two species slightly overlapped those of the rest of the assemblage and did not conform to any guild (Echidna nocturna and Halichoeres aestuaricola). It is hypothesised that guild formation may be a consequence of aggregation of species at abundant resources in the intertidal zone rather than a direct consequence of inter-specific competition. Ontogenetic changes in diets were observed in two resident species of the assemblage (B. ramosus and G. adustus). The latitudinal trend for herbivory inside this tropical assemblage is discussed in comparison with similar temperate studies in the eastern Pacific.

Keywords

Macroalgae Prey Item Fish Assemblage Niche Breadth Rocky Shore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Support for this work was provided by L. Castellanos and COLCIENCIAS (Jóvenes Investigadores program) scholarship to G.A.C. and by the Department of Biology at the Universidad del Valle. The Colombian National Navy (DIMAR) granted access to Isla Palma for fieldwork. We are grateful to K. Fierro, J. Naranjo and E. Escarria for their assistance during sampling activities. Suggestions of U. Krumme and A. Dominici-Arosemena helped significantly to clarify various aspects of the article. E.A Rubio, J. Pulgar and three anonymous reviewers provided valuable comments on an early version of this manuscript. L. Galindo, J. Clayton, A. Roach, and P. Silverston-Sopkin made significant corrections of English usage.

References

  1. Allen G, Robertson DR (1994) Fishes of the tropical Eastern Pacific. University of Hawaii Press, HonoluluGoogle Scholar
  2. Angel A, Ojeda FP (2001) Structure and trophic organization of subtidal fish assemblages on the northern Chilean coast: the effect of habitat complexity. Mar Ecol Prog Ser 217:81–91CrossRefGoogle Scholar
  3. Bellwood DR (2003) Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29:71–83CrossRefGoogle Scholar
  4. Benavides AG, Cancino JM, Ojeda FP (1994) Ontogenetic change in the diet of Aplodactylus punctatus (Pises: Aplodactylidae): an ecophysiological explanation. Mar Biol 118:1–5CrossRefGoogle Scholar
  5. Bennett B, Griffiths CL, Penrith M (1983) The diets of littoral fish from the Cape Peninsula. S Afr J Zool 18:343–352Google Scholar
  6. Berrios V, Vargas M (2004) Estructura trófica de la asociación de peces intermareales de la costa rocosa del norte de Chile. Rev Biol Trop 52(1):201–212PubMedGoogle Scholar
  7. Blaber SJM (1997) Fish and fisheries of tropical estuaries. Chapman and Hall, LondonGoogle Scholar
  8. Blondel J (2003) Guilds or functional groups: does it matter? Oikos 100:223–231CrossRefGoogle Scholar
  9. Boltovskoy D (1981) Atlas del zooplancton del Atlantico sudoccidental y métodos de trabajo con el zooplancton marino. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, ArgentinaGoogle Scholar
  10. Boyle KS, Horn MH (2006) Comparison of feeding guild structure and ecomorphology of intertidal fish assemblages from central California and central Chile. Mar Ecol Prog Ser 319:65–84CrossRefGoogle Scholar
  11. Cantera JR, Neira R, Ricaurte C (1998) Bioerosión en la costa pacífica colombiana: un estudio sobre la biodiversidad, la ecología y el impacto de los animales destructores de los acantilados rocosos. Fondo FEN Colombia, BogotáGoogle Scholar
  12. Castellanos-Galindo GA, Giraldo A, Rubio EA (2005) Community structure of an assemblage of tidepool fishes on a Tropical Eastern Pacific rocky shore, Colombia. J Fish Biol 67:392–408CrossRefGoogle Scholar
  13. Chirichigno NF (1998) Clave para identificar los peces marinos del Perú. Instituto Nacional del Perú, LimaGoogle Scholar
  14. Choat JH (1991) The biology of herbivorous fishes on coral reefs. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 120–155Google Scholar
  15. Choat JH, Clements KD (1998) Vertebrate herbivores in marine and terrestrial environments: a nutritional perspective. Annu Rev Ecol Syst 29:375–403CrossRefGoogle Scholar
  16. Choat JH, Clements KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs. I. Dietary analyses. Mar Biol 140:613–623CrossRefGoogle Scholar
  17. Choat JH, Robbins WD, Clements KD (2004) The trophic status of herbivorous fishes on coral reefs. II. Food processing modes and trophodynamics. Mar Biol 145:445–454CrossRefGoogle Scholar
  18. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, PlymouthGoogle Scholar
  19. Costello MJ (1990) Predator feeding strategy and prey importance: a new graphical analysis. J Fish Biol 36:261–263CrossRefGoogle Scholar
  20. Denny MW (1988) Biology and the mechanics of the wave-swept environment. Princeton University Press, PrincetonGoogle Scholar
  21. Dominici-Arosemena A, Wolff M (2006) Reef fish community structure in the Tropical Eastern Pacific (Panamá): living in a relatively stable rocky reef environment. Helgol Mar Res 60(4):287–305Google Scholar
  22. Ebeling AW, Hixon MA (1991) Tropical and temperate reef fishes: comparison of community structure. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 509–563Google Scholar
  23. Ferreira CEL, Floeter SR, Gasparini JL, Ferreira BP, Joyeux JC (2004) Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J Biogeogr 31:1093–1106CrossRefGoogle Scholar
  24. Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (1995) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen I. Plantas e invertebrados. FAO, RomaGoogle Scholar
  25. Floeter SR, Ferreira CEL, Dominici-Arosemena A, Zalmon IR (2004) Latitudinal gradients in Atlantic reef fish communities: trophic structure and spatial use patterns. J Fish Biol 64:1680–1699CrossRefGoogle Scholar
  26. Floeter SR, Behrens MD, Ferreira CEL, Paddack MJ, Horn MH (2005) Geographical gradients of marine herbivorous fishes: patterns and processes. Mar Biol 147:1435–1447CrossRefGoogle Scholar
  27. Gladfelter WB, Johnson WS (1983) Feeding niche separation in a guild of tropical reef fishes (Holocentridae). Ecology 64(3):552–563CrossRefGoogle Scholar
  28. Griffiths SP (2000) The use of clove oil as an anaesthetic and method for sampling intertidal rockpool fishes. J Fish Biol 57:1453–1464CrossRefGoogle Scholar
  29. Grossman GD (1980) Ecological aspects of ontogenetic shifts in prey size utilization in the bay goby (Pisces: Gobiidae). Oecologia (Berlin) 47:233–238CrossRefGoogle Scholar
  30. Grossman GD (1986) Food resource partitioning in a rocky intertidal fish assemblage. J Zool Lond (B) 1:317–355CrossRefGoogle Scholar
  31. Hajisamae S, Chou LM, Ibrahim S (2003) Feeding habits and trophic organization of the fish community in shallow waters of an impacted tropical habitat. Est Coast Shelf Sci 58:89–98CrossRefGoogle Scholar
  32. Hajisamae S, Chou LM, Ibrahim S (2004) Feeding habits and trophic relationships of fishes utilizing an impacted coastal habitat, Singapore. Hydrobiologia 520:61–71CrossRefGoogle Scholar
  33. Harmelin-Vivien ML (2002) Energetics and fish diversity on coral reefs. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 265–274Google Scholar
  34. Horn MH (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol Annu Rev 27:167–272Google Scholar
  35. Horn MH, Ojeda FP (1999) Herbivory. In: Horn MH, Martin KLM, Chotkowski MA (eds) Intertidal fishes, life in two worlds. Academic Press, San Diego, pp 197–222Google Scholar
  36. Hulbert SH (1978) The measurement of the niche overlap and some relatives. Ecology 59(1):67–77CrossRefGoogle Scholar
  37. Hyslop EJ (1980) Stomach contents analysis- a review of methods and their application. J Fish Biol 17:411–429CrossRefGoogle Scholar
  38. Jaksic FM (2001) Ecología de Comunidades. Ediciones Universidad Católica de Chile, ChileGoogle Scholar
  39. Jaksic FM, Feinsinger P, Jimenez JE (1993) A long term study on the dynamics of guild structure among predatory vertebrates at a semi-arid neotropical site. Oikos 67:87–96CrossRefGoogle Scholar
  40. Jones JP, Ferrel DJ, Sale PF (1991) Fish predation and its impacts on the invertebrates of coral reefs and adjacent sediments. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 509–563Google Scholar
  41. Keen MA (1971) Sea shells of tropical West America: marine mollusks from Baja California to Perú. Standford University Press, StandfordGoogle Scholar
  42. Kotrschal K, Thomson DA (1986) Feeding patterns in eastern tropical Pacific blennioid fishes (Teleostei: Tripterygiidae, Labrisomidae, Chaenopsidae, Bleniidae). Oecologia (Berlin) 70:367–378CrossRefGoogle Scholar
  43. Krebs CJ (1989) Ecological methodology. Harper & Row, New YorkGoogle Scholar
  44. Kruskal JB, Wish M (1978) Multidimensional scaling. Sage Publications, CaliforniaGoogle Scholar
  45. Levings SC, Garrity SD (1985) Grazing patterns in Siphonaria gigas (Mollusca, Pulmonata) on the rocky Pacific coast of Panama. Oecologia 64(2):152–159CrossRefGoogle Scholar
  46. Levins R (1968) Evolution in changing environments. Princeton University Press, PrincetonGoogle Scholar
  47. Lewis RT (1964) The ecology of rocky shores. The English University Press, LondonGoogle Scholar
  48. Little C, Kitching JA (1996) The biology of rocky shores. Oxford University Press, OxfordGoogle Scholar
  49. Lubchenco J, Menge BA, Garrity SD, Lubchenco PJ, Ashkenas LR, Gaines SD, Emlet R, Lucas J, Strauss S (1984) Structure, persistence, and role of consumers in a tropical rocky intertidal community (Taboguilla Island, Bay of Panama). J Exp Mar Biol Ecol 78:23–73CrossRefGoogle Scholar
  50. McKenna Jr JE (2003) An enhanced analysis program with bootstrap significance testing for ecological community analysis. Environ Modell Softw 18:205–220CrossRefGoogle Scholar
  51. Meekan MG, Choat JH (1997) Latitudinal variation in abundance of herbivorous fishes. Mar Biol 128:373–383CrossRefGoogle Scholar
  52. Menge BA, Lubchenco J (1981) Community organization in temperate and tropical rocky intertidal habitats: prey refuges in relation to consumers pressure gradients. Ecol Monogr 51(4):429–450CrossRefGoogle Scholar
  53. Menge BA, Lubchenco J, Ashkenas LR (1985) Diversity, heterogeneity, and consumer pressure in a tropical rocky intertidal community. Oecologia 65(3):494–405CrossRefGoogle Scholar
  54. Metaxas A, Scheibling RE (1993) Community structure and organization of tidepools. Mar Ecol Prog Ser 98:187–198CrossRefGoogle Scholar
  55. Muñoz AA, Ojeda FP (1997) Feeding guild structure of a rocky intertidal fish assemblage in Central Chile. Environ Biol Fish 49:471–479CrossRefGoogle Scholar
  56. Muñoz AA, Ojeda FP (1998) Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114:563–573CrossRefGoogle Scholar
  57. Muñoz AA, Ojeda FP (2000) Ontogenetic changes in the diet of the herbivorous Scartichthys viridis in a rocky intertidal zone in Central Chile. J Fish Biol 56:968–998CrossRefGoogle Scholar
  58. Nieder J (2001) Amphibious behaviour and feeding ecology of the four-eyed blenny (Dialommus fuscus, Labrisomidae) in the intertidal zone of the Island of Santa Cruz (Galapagos, Ecuador). J Fish Biol 58:755–767CrossRefGoogle Scholar
  59. Norton SF, Cook AE (1999) Predation by fishes in the intertidal. In: Horn MH, Martin KLM, Chotkowski MA (eds) Intertidal fishes, life in two worlds. Academic Press, San Diego, pp 223–263Google Scholar
  60. Ojeda FP, Muñoz AA (1999) Feeding selectivity of the herbivorous fish Scartichthys viridis: effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Mar Ecol Prog Ser 184:219–229CrossRefGoogle Scholar
  61. Ojeda FP, Labra FA, Muñoz AA (2000) Biogeographic patterns of Chilean littoral fish. Rev Chil Hist Nat 73:625–641CrossRefGoogle Scholar
  62. Paine RT, Levin SA (1981) Intertidal landscapes: disturbance and the dynamics of pattern. Ecol Monogr 51:145–178CrossRefGoogle Scholar
  63. Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in western Australia. Ecology 50:1012–1030CrossRefGoogle Scholar
  64. Pianka ER (1980) Guild structure in desert lizards. Oikos 35:194–201CrossRefGoogle Scholar
  65. Quijada PA, Caceres CW (2000) Patrones de abundancia, composición trófica y distribución espacial del ensamble de peces intermareales de la zona centro-sur de Chile. Rev Chil Hist Nat 73(4):739–747Google Scholar
  66. Root RB (1967) The niche exploitation pattern of the blue-gray gnatcatcher. Ecol Monogr 37:317–350CrossRefGoogle Scholar
  67. Ross ST (1986) Resource partitioning in fish assemblages: a review of field studies. Copeia 1986:352–388Google Scholar
  68. Robertson DR, Allen G (2002) Shorefishes of the Tropical Eastern Pacific: an information system. CD-ROM. Smithsonian Tropical Research Institute, Balboa, PanamaGoogle Scholar
  69. Rubio EA (1988) Peces de importancia comercial para la costa del Pacífico colombiano. Centro de publicaciones Facultad de Ciencias Universidad del Valle, Cali-ColombiaGoogle Scholar
  70. Schoener TW (1970) Non-synchronous spatial overlap of lizards in patchy habitats. Ecology 51:408–418CrossRefGoogle Scholar
  71. Thomson DA, Lehner CE (1976) Resilience of a rocky intertidal fish community in a physically unstable environment. J Exp Mar Biol Ecol 22:1–29CrossRefGoogle Scholar
  72. Thresher RE, Colin PL (1986) Trophic structure, diversity and abundance of fishes of the deep reef (30–300 m) at Enewetak, Marshall Islands. Bull Mar Sci 38:253–252Google Scholar
  73. Varas E, Ojeda FP (1990) Intertidal fish assemblages of the Central chilean coast: diversity, abundance and trophic patterns. Rev Biol Mar 25:59–70Google Scholar
  74. Wainwright PC (1988) Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes. Ecology 69:635–645CrossRefGoogle Scholar
  75. Wainwright PC, Bellwood DR (2002) Ecomorphology of feeding in coral reef fishes. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 33–55Google Scholar
  76. Wennhage H, Pihl L (2002) Fish feeding guilds in shallow rocky and soft bottom areas on the Swedish west coast. J Fish Biol 61(Supplement A):207–228Google Scholar
  77. Wiens JA (1993) Fat times, lean times and competition among predators. Trends Ecol Evol 8:348–349CrossRefGoogle Scholar
  78. White TCR (1985) When is a herbivore not a herbivore? Oecologia 67:596–597CrossRefGoogle Scholar
  79. Yoshiyama RM (1980) Food habitats of three species of rocky intertidal sculpins (Cottidae) in central California. Copeia 1980(3):515–525Google Scholar
  80. Zar JH (1999) Biostatistical Analysis. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gustavo Adolfo Castellanos-Galindo
    • 1
    • 2
    • 3
  • Alan Giraldo
    • 4
    Email author
  1. 1.Departamento de Biología, Sección de Biología Marina, Grupo de Investigación en Ecología de Arrecifes CoralinosUniversidad del ValleCaliColombia
  2. 2.Laboratorio de Zoología, Museo Departamental de Ciencias NaturalesINCIVACaliColombia
  3. 3.ISATEC, Center for Tropical Marine Ecology (ZMT)University of BremenBremenGermany
  4. 4.Departamento de Biología, Sección de Zoología, Grupo de Investigación en Ecología AnimalUniversidad del ValleCaliColombia

Personalised recommendations