Skip to main content
Log in

Cytochrome b (Cyt-b) gene sequence analysis in six flatfish species (Teleostei, Pleuronectidae), with phylogenetic and taxonomic insights

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) at Cyt-b gene region was sequenced for six flatfish species (in total nine sequences of at least 1,117 bp) from the Far East of Russia and compared with other sequences of Pleuronectiformes comprising altogether 34 species and 3 outgroup species (Perciformes). Analysis of the protein-coding Cyt-b gene revealed a statistically substantiated bias in (T + C):(A + G) content, supporting earlier findings. Values of P-distances, as summarized for different scales of the evolutionary history at Cyt-b gene, revealed a clear pattern of increased nucleotide diversity at four different phylogenetic levels: (1) intraspecies, (2) intragenus, (3) intrafamily, and (4) intraorder. Scores of average P-distances of the four categories of comparison in flatfishes were (1) 0.46 ± 0.19%, (2) 11.74 ± 2.26%, (3) 17.51 ± 3.13%, and (4) 25.60 ± 0.42%, respectively (mean ± SE). These data support the concept that speciation in the order Pleuronectiformes, in most cases, follows a geographic mode through the accumulation of numerous small genetic changes over a long period of time. A phylogenetic tree for 64 sequences of flatfishes and 3 other fishes belonging to ray-finned fishes (Actinopterigii) was developed using Cyt-b gene and four different analytical approaches: neighbour-joining (NJ), Bayesian (BA), maximum parsimony (MP), and maximum likelihood (ML). The analysis revealed a monophyletic origin for the representatives of Pleuronectidae, which is the principal flatfish family investigated (99% repetition level in our BA analysis). A well supported property of the phylogenetic tree was the monophyletic placement of all the five flatfish families and the order Pleuronectiformes among other representatives of ray-finned fishes of the class Actinopterigii. Species identification on per individual basis (barcoding tagging) was generally high. However, there were taxonomic complications that arose during analysis, and they are discussed. Major outcomes of this discussion are the necessity of synonymy acceptance for Hippoglossoides elassodon, and H. robustus, and for Pseudopleuronectes yokohamae and P. schrenki. Priority considerations suggest H. elassodon and P. yokohamae as valid species names.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Cyt-b :

Cytochrome b

Co-1 :

Cytochrome oxidase 1

mtDNA:

Mitochondrial DNA

PCR:

Polymerase chain reaction

bp:

Base pairs

References

  • Anderson S, Bankier NT, Barelli BG, deBruijin MHL, Coulson AR, Drouin J, Eperon IC, Neirlich CDP, Roe BA, Sanger F, Schrier PH, Smith AJH, Staden R and Young IG (1981) Sequence and organization of human mitochondrial genome. Nature 290:457–465

    Article  CAS  Google Scholar 

  • Asahida T, Saitoh K, Yamashita Y, Aonuma Y and Kobayashi T (1998) Genetic variation in the Japanese flounder based on analysis of mitochondrial DNA by restriction endonucleases. Nippon Suisan Gakkaishi 64:377–383

    Article  CAS  Google Scholar 

  • Avise JC (2001) Phylogeography. The history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Ayala FJ, Tracey ML, Hedgecock D, Richmond RC (1974) Genetic differentiation during the speciation process in Drosophila. Evolution 28:576–592

    Article  Google Scholar 

  • Berendzen PB, Dimmick WW (2002) Phylogenetic relationships of Pleuronectiformes based on molecular evidence. Copeia 3:642–652

    Article  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW and Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Article  CAS  Google Scholar 

  • Bush GL (1975) Modes of animal speciation. Annu Rev Ecol Syst 6:339–364

    Article  Google Scholar 

  • Cooper JA and Chapleau F (1998) Monophyly and intrarelationships of the family Pleuronectidae (Pleuronectiformes), with a revised classification. Fish Bull 96:686–726

    Google Scholar 

  • Dobzhansky Th (1955) Evolution, genetics and man. Wiley and Chapman & Hall, New York, London, p 398

    Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates Inc., Sunderland, p 664

    Google Scholar 

  • FishBase (2005) In: Froesy R, Pauly D (eds) World Wide Web electronic publication. http://www.fishbase.org

  • Hall B (2001) Phylogenetic trees made easy. A how-to manual for molecular biologists. Sinauer Assoc. Inc., Sunderland

    Google Scholar 

  • Harrison RG (1998) Linking evolutionary pattern and process: the relevance of species concepts for the study of speciation. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 19–31

    Google Scholar 

  • Hebert PD, Stoeckle MY, Zemlak TS and Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312

    Article  Google Scholar 

  • Hillis DM (1998) Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst Biol 47:3–8

    Article  CAS  Google Scholar 

  • Hulsenbeck JP, Rondquist F (2001) Mr. BAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  Google Scholar 

  • Ivankova ZG (1995) Dynamics of the flounder populations in the northwest Japan Sea. In: International Symposium on North Pacific Flatfish. Anchorage (USA), pp 443–449

  • Ivankov VN, Vinnikov KA, Borisovets EE and Kartavtsev YP (2002) Taxonomic relations between Pseudopleuronectes yokohamae and P. schrenki. In Abstract of conference for educated students, Science and Education Centre. Far Eastern University Press, Vladivostok, pp 69–70

  • Johns GC, Avise JC (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 15:1481–1490

    Article  CAS  Google Scholar 

  • Johnson GD, Paterson C (1993) Percomorph phylogeny: a survey of acanthomorphs and new proposal. Bull Mar Sci 52:554–626

    Google Scholar 

  • Kartavtsev YP, Chichvarkhin AY, Svinyna OV, Ivankov VN, Borisovets EE and Vinnikov KA (2002a) Taxonomic relations between Pseudopleuronectes yokohamae and P. schrenki. In Abstract of conference for educated students, Science and Education Centre. Far Eastern University Press, Vladivostok, pp 70–71

  • Kartavtsev YP, Sviridov VV, Sasaki T, Hanzawa N (2002b) Genetic divergence of far eastern dace belonging to the genus Tribolodon (Pisces, Cyprinidae) and closely related taxa: some insights in taxonomy and speciation (In Russian, translated in English). Genetica 38:1518–1531

    Google Scholar 

  • Kartavtsev YP (2005) Molecular evolution and population genetics. Far Eastern State University Press, Vladivostok, p 234

    Google Scholar 

  • Kartavtsev YP, Lee J-S (2006) Analysis of nucleotide diversity at genes Cyt-b and Co-1 on population, species, and genera levels. Applicability of DNA and allozyme data in the genetics of speciation. Genetika 42:437–461

    PubMed  Google Scholar 

  • Kim I-C, Kweon H-S, Kim YJ, Kim C-B, Gye MC, Lee W-O, Lee Y-S and Lee J-S (2004) The complete mitochondrial genome of the javeline goby Acanthogobius hasta (Perciformes, Gobiidae) and phylogenetic considerations. Gene 336:147–153

    Article  CAS  Google Scholar 

  • Kim I-C, Jung S-O, Lee Y-M, Lee CJ, Park J-K and Lee J-S (2005) The complete mitochondrial genome of the ray fish Raja porosa (Chondrichthyes, Rajidae). DNA Seq 16:187–194

    Article  CAS  Google Scholar 

  • King M (1993) Species evolution: the role of chromosome change. Cambridge University Press, Cambridge, p 336

    Google Scholar 

  • Kogelnik AM, Lott MT, Brown MD, Navathe SB and Wallace DC (2005) MITOMAP: a human mitochondrial genome database—1998 update. Nucleic Acids Res 26:112–115

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis (with a 130-page printed manual). Pennsilvania State University, University Park, MEGA3. Web-base β-version, 2005 update

  • Lee J-S (2000) The internally self-fertilized hermaphroditic teleost Rivulus marmoratus (Cyprinodontiformes, Rivulidae) β-actin gene: amplification and sequence analysis with conserved primers. Mar Biotechnol 2: 161–166

    Article  CAS  Google Scholar 

  • Lee J-S, Miya M, Lee Y-S, Kim C-G, Park E-H, Aoki Y, Nishida M (2001) The complete DNA sequence of the mitochondrial genome of the self-fertilizing fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the first description of duplication of control region in fish. Gene 280:1–7

    Article  CAS  Google Scholar 

  • Lindberg GU, Fedorov VV (1993) Fishes of Japan Sea and nearby parts of Okhotsk and Yellow seas. Part 6. Teleostomi. Osteichthyes. Actinopterigii. XXXI. Pleuronectiformes. Sankt-Petersburg University Press, Sankt-Petersburg, p 272 c

    Google Scholar 

  • Masuda H, Amaoka K, Araga C, Uyeno T, and Yoshino T (1984) The fishes of the Japanese Archipelago. Tokai University Press, Tokyo, Japan, p 437

    Google Scholar 

  • Mayr E (1982) Process of speciation in animals. In: Barigozzi C (ed) Mechanisms of speciation. Alan R. Liss, NY, pp 1–20

    Google Scholar 

  • Miya M, Kawaguchi A and Nishida M (2001) Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol 18:1993–2009

    Article  CAS  Google Scholar 

  • Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM and Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 1:121–38

    Article  Google Scholar 

  • Moiseev PA (1953) Cod and flatfishes of the Far East. Izvestia TINRO 40:119–287

    Google Scholar 

  • Nagase M, Aimi T, Suginaka K, Kitamoto Y and Morinaga T (2005) Complete mitochondrial DNA sequence of the Japanese flying fish Cypselurus hiraii. Fish Sci 71:914–923

    Article  CAS  Google Scholar 

  • Nailor GJ, Collins TM and Brown WM (1996) Hydrophobicity and phylogeny. Nature 373:565–566

    Article  Google Scholar 

  • Nakabo T (2002) Fishes of Japan with pictorial keys to the species (English edition). Tokai University Press, Tokyo, lxi + vii + p 1749

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, NY, p 512

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, NY, p 333

    Google Scholar 

  • Nelson JS (1994) Fishes of the world, 3rd edn. Wiley, New York, p 600

    Google Scholar 

  • Nohara M, Nishida M, Miya M, Nishikawa T (2005) Evolution of the mitochondrial genome in cephalochordata as inferred from complete nucleotide sequences from two epigonichthys species. J Mol Evol 60:526–537

    Article  CAS  Google Scholar 

  • Norman IR (1934) A systematic monograph of the flatfishes (Heterosomata). Psettodidae, Bothidae, Pleuronectidae, vol I. British Museum, London, 459 pp

    Book  Google Scholar 

  • Orr JW, Matarese AC (2000) Revision of the genus Lepidopsetta Gill, 1862 (Teleostei: Pleuronectidae) based on larval and adult morphology, with a description of a new species from the North Pacific Ocean and Bering Sea. Fish Bull 98: 539–582

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pardo BG, Machordom A, Foresti F, Porto-Foresti F, Azevedo MFC, Banon R, Sanchez L. and Martinez P (2005) Phylogenetic analysis of flatfish (Order Pleuronectiformes) based on mitochondrial 16s rDNA sequences. Sci Mar 69:531–543

    Article  CAS  Google Scholar 

  • Posada D, Grandal KA (1998) MODELTEST: testing the model DNA substitution. Bioinformatics 14:817–818

    Article  CAS  Google Scholar 

  • Reagan CT (1910) The origin and the evolution of the Teleostean fishes of the order Heterosomata. Ann Mag Nat Hist 8:6

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) Mr.BAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  • Saitoh K, Hayashizaki K, Yokoyama,Y, Asahida T, Toyohara H, YamashitaY (2000) Complete nucleotide sequence of Japanese flounder (Paralichthys olivaceus) mitochondrial genome: Structural properties and cues for resolving teleostean relationships. J Hered 91: 271–278

    Article  CAS  Google Scholar 

  • Sakamoto K (1984) Interrelationships of the family Pleuronectidae (Pisces: Pleuronectiformes). Memoirs of the Faculty of Fisheries, Hokkaido University 31:95–215

    Google Scholar 

  • Simpson GG (1961) Principles of animal taxonomy. The species and lower categories. Columbia University Press, NY

    Google Scholar 

  • StatSoft, Inc. (1999). STATISTICA for Windows [Computer program manual]. Tulsa, OK: StatSoft, Inc., 2300 East 14th Street, Tulsa, OK 74104, phone: (918) 749–1119, fax: (918) 749–2217, email: info@statsoft.com. http://www.statsoft.com

  • Suzuki T, Srivastava AS and Kurokawa T (2002) cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese flounder, Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 131: 63–70

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony, version 4.10. Sinauer Associates, Sunderland

  • Templeton AR (1981) Mechanisms of speciation—population genetic approach. Annu Rev Ecol Syst 12:23–48

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position, specific gap penalties, and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Vinnikov KA (2003) On taxonomic status of flatfishes Hippoglossoides elassodon and H. robustus (morphological analysis). In: Regional conference on actual problems of ecology, marine biology, and biotechnology (Abstract). Far East State University Press, Vladivostok, pp 25–26

  • Vinnikov KA, Ivankov VN, Pitruk DL (2006) Taxonomic status of Pseudopleuronectes yokohamae and P. schrenki (Pleuronectidae sensu Cooper and Chapleau, 1998). J Ichthyol 46: 301–310

    Article  Google Scholar 

  • Vinnikov KA, Ivankov VN, Pitruk DL (2007) Taxonomic relations of three flounder species of the subfamily Pleuronectinae of the Sea of Japan. Russ J Mar Biol 33: 98–109

    Article  Google Scholar 

  • Wallace DC (1992) Diseases of the mitochondrial-DNA. Annu Rev Biochem 61:1175–1212

    Article  CAS  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PA, Hebert PDN (2005) DNA barcoding Australia fish species. Philos Trans R Soc Lond B 360:1847–1857

    Article  CAS  Google Scholar 

  • Wilcox TP, Garcia de Leon FJ, Hendrickson DA, Hillis DM (2004) Convergence among cave catfishes: long-branch attraction and a Bayesian relative rates test. Mol Phylogenet Evol 31:1101–1113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very thankful for proofreading of the manuscript and useful comments to Dr. B. Ward, Dr. H. Dams and Mrs. I.A. Barsegova. This work was supported by a grant of Eco-Technopia 21 (Grant No. 052-051-034) funded to Jae-Seong Lee. Dr. Yuri Kartavtsev was a brain pool fellow (051-4-15) nominated by the Korea Foundation of Science and Technology, Brain Pool Program. This work was also supported in part by FEB RAS grant # 06-III-B-06-186, # 07-III-B-06-035, US CRDF grant # RUXO-003-VL-06 and RFFI grant # 07-04-00186-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Kartavtsev.

Additional information

Communicated by O. Kinne.

Appendix

Appendix

Table 3 Nucleotide diversity measured as P distances for the Cyt-b gene 67 sequences among flatfish and 3 outgroup species

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartavtsev, Y.P., Park, TJ., Vinnikov, K.A. et al. Cytochrome b (Cyt-b) gene sequence analysis in six flatfish species (Teleostei, Pleuronectidae), with phylogenetic and taxonomic insights. Mar Biol 152, 757–773 (2007). https://doi.org/10.1007/s00227-007-0726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0726-9

Keywords

Navigation