Skip to main content
Log in

Evidence for restricted gene flow over small spatial scales in a marine snapping shrimp Alpheus angulosus

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Despite the apparent absence of geographic barriers, connectivity among marine populations may be restricted by, for example, ecological or behavioral mechanisms. In such cases, populations may show genetic differentiation even over relatively small spatial scales. Here, mitochondrial sequence data from the cytochrome oxidase I (COI) gene and seven polymorphic microsatellite markers were used to investigate fine geographic scale population genetic structure in the snapping shrimp Alpheus angulosus, a member of the A. armillatus species complex, from collections in Florida, Jamaica, and Puerto Rico carried out from 1999 to 2005. The COI data showed a deep divergence that separated these samples into two mitochondrial clades, but this divergence was not supported by the microsatellite data. The COI data reflect past population divergence not reflected in extant population structure on the whole genome level. The microsatellite data also revealed evidence for moderate population structure between populations as close as ∼10 km, and no evidence for isolation by distance, as divergences between near populations were at least as strong as those between more broadly separated populations. Overall, these data suggest a role for restricted gene flow between populations, though the mechanisms that reduce gene flow in this taxon remain unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avise JC (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63:62–76

    Article  CAS  Google Scholar 

  • Ball AO, Chapman RW (2003) Population genetic analysis of white shrimp, Litopenaeus setiferus, using microsatellite genetic markers. Mol Ecol 12:2319–2330

    Article  CAS  PubMed  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390

    Article  CAS  PubMed  Google Scholar 

  • Bay LK, Crozier RH, Caley MJ (2006) The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef. Mar Biol 149:1247–1256

    Article  Google Scholar 

  • Bilodeau AL, Felder DL, Neigel JE (2005) Population structure at two geographic scales in the burrowing crustacean Callichirus islagrande (Decapoda, Thalassinidea): historical and contemporary barriers to planktonic dispersal. Evolution 59:2125–2138

    Article  CAS  PubMed  Google Scholar 

  • Bowen BW, Bass AL, Muss A, Carlin J, Robertson DR (2006) Phylogeography of two Atlantic squirrelfishes (Family Holocentridae): exploring links between pelagic larval duration and population connectivity. Mar Biol 149:899–913

    Article  Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York

    Google Scholar 

  • Bruce AJ (1999) Alpheus sorror, a new snapping shrimp cryptospecies from Sri Lanka (Crustacea: Decapoda: Alpheidae). Raffles Bull Zool 47:453–463

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chace FA (1972) The shrimps of the Smithsonian-Bredin Caribbean expeditions with a summary of the West Indian shallow water species (Crustacea: Decapoda: Natantia). Smithson Contrib Zool 98:1–179

    Google Scholar 

  • Chace FA (1988) The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine expedition, 1907–1910, Part 5: family Alpheidae. Smithson Contrib Zool 466:1–99

    Google Scholar 

  • Collin R (2001) The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Mol Ecol 10:2249–2262

    Article  CAS  PubMed  Google Scholar 

  • Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287:857–859

    Article  CAS  PubMed  Google Scholar 

  • Dennis GD, Smith-Vaniz WF, Colin PL, Hensley DA, McGhee MA (2005) Shore fishes from islands of the Mona Passage, Greater Antilles with comments on their zoogeography. Caribb J Sci 41:716–743

    Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Doherty PJ, Planes S, Mather P (1995) Gene flow and larval duration in seven species of fish from the Great Barrier Reef. Ecology 76:2373–2391

    Article  Google Scholar 

  • Duffy JE (2003) The ecology and evolution of eusociality in sponge-dwelling shrimp. In: Kikuchi T, Higashi S, Azuma N (eds) Genes, behaviors and evolution of social insects. Hokkaido University Press, Sapporo, pp 217–254

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Felder DL, Staton JL (1994) Genetic differentiation in the Gulf-Atlantic species complexes of Sesarma and Uca (Crustacea: Decapoda: Brachyura). J Crustacean Biol 14:191–209

    Article  Google Scholar 

  • Garoia F, Guarniero I, Ramšak A, Ungaro N, Landi M, Piccinetti C, Mannini P, Tinti F (2004) Microsatellite DNA variation reveals high gene flow and panmictic populations in the Adriatic shared stocks of the European squid and cuttlefish (Cephalopoda). Heredity 93:166–174

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Rodríguez C, Lasker HR (2004) Microsatellite variation reveals high levels of genetic variability and population structure in the gorgonian coral Pseudopterogorgia elisabethae across the Bahamas. Mol Ecol 13:2211–2221

    Article  PubMed  Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population size of marine organisms? In: Beaumont A (eds) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122–134

    Google Scholar 

  • Hoffman EA, Kolm N, Berglund A, Arguello JR, Jones AG (2005) Genetic structure in the coral-reef-associated Banggai cardinalfish, Pterapogon kauderni. Mol Ecol 14:1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804

    Article  CAS  Google Scholar 

  • Knowlton N, Keller BD (1985) Two more species of alpheid shrimps associated with the Caribbean sea anemones Bartholomea annulata and Heteractis lucida. Bull Mar Sci 37:893–904

    Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Ser B 265:2257–2263

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Robertson DR (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc R Soc Ser B 273:2201–2208

    Article  CAS  Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    Article  CAS  PubMed  Google Scholar 

  • Macdonald KS, Rios R, Duffy JE (2006) Biodiversity, host specificity, and dominance by eusocial species among sponge-dwelling alpheid shrimp on the Belize barrier reef. Divers Distrib 12:165–178

    Article  Google Scholar 

  • Maier E, Tollrian R, Rinkevich B, Nürnberger B (2005) Isolation by distance in the scleractinian coral Seriatopora hystrixfrom the Red Sea. Mar Biol 147:1109–1120

    Article  Google Scholar 

  • Mathews LM (2002) Tests of the mate-guarding hypothesis for social monogamy: does population density, sex ratio, or female synchrony affect behavior of male snapping shrimp (Alpheus angulatus)? Behav Ecol Sociobiol 51:426–432

    Article  Google Scholar 

  • Mathews LM (2006a) Cryptic biodiversity and phylogeographic patterns in a snapping shrimp species complex. Mol Ecol 15:4049–4063

    Article  CAS  PubMed  Google Scholar 

  • Mathews LM (2006b) Variable microsatellite markers for a snapping shrimp (Alpheus armillatus) species complex. Mol Ecol Notes. doi:10.1111/j.1471-8286.2006.01623.x

    Article  Google Scholar 

  • McClure MR (1995) Alpheus angulatus, a new species of snapping shrimp from the Gulf of Mexico and the northwestern Atlantic, with a redescription of A. heterochaelis Say 1818 (Decapoda: Caridea: Alpheidae). Proc Biol Soc Wash 108:84–97

    Google Scholar 

  • McClure MR (2002) Revised nomenclature of Alpheus angulatus McClure, 1995 (Decapoda: Caridea: Alpheidae). Proc Biol Soc Wash 115:368–370

    Google Scholar 

  • McClure MR, Greenbaum IF (1994) Biochemical variation in Alpheus (Decapoda, Caridea, Alpheidae) from the coast of Texas: evidence for cryptic species. Southwest Nat 39:63–66

    Article  Google Scholar 

  • McMillen-Jackson ALM, Bert TM (2003) Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern United States. Mol Ecol 12:2895–2905

    Article  CAS  PubMed  Google Scholar 

  • Moberg PE, Burton RS (2000) Genetic heterogeneity among adult and recruit red sea urchins, Strongylocentrotus franciscanus. Mar Biol 136:773–784

    Article  CAS  Google Scholar 

  • Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nylander JAA (2004) MrModeltest (version 2.2). Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Palumbi SR, Martin A, Romano S, McMillan WO, Stice L (1991) The simple fool’s guide to PCR: a collection of PCR protocols, version 2. University of Hawaii, Honolulu

  • Papadopoulos LN, Peijnenburg KTCA, Luttikhuizen PC (2005) Phylogeography of the calanoid copepods Calanus helgolandicus and C. euxinus suggests Pleistocene divergences between Atlantic, Mediterranean, and Black Sea populations. Mar Biol 147:1353–1365

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 1.2)—population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Richardson PL (2005) Caribbean Current and eddies as observed by surface drifters Deep Sea Res II 52:429–463

    Article  Google Scholar 

  • Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Mol Ecol 11:243–252

    Article  CAS  PubMed  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc Ser B 272:573–579

    Article  Google Scholar 

  • Riginos C, Victor BC (2001) BC Larval spatial distributions and other early life-history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proc R Soc Ser B 268:1931–1936

    Article  CAS  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Stamatis C, Triantafyllidis A, Moutou KA, Mamuris Z (2004) Mitochondrial DNA variation in northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. Mol Ecol 13:1377–1390

    Article  CAS  PubMed  Google Scholar 

  • Sunnocks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203

    Article  Google Scholar 

  • Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci S70:251–271

    Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0B10. Sinauer Associates, Sunderland, Massachusetts

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  CAS  PubMed  Google Scholar 

  • Taylor MS, Hellberg ME (2006) Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol Ecol 15:695–707

    Article  CAS  PubMed  Google Scholar 

  • Thompson AR, Thacker CE, Shaw EY (2005) Phylogeography of marine mutualists: parallel patterns of genetic structure between obligate goby and shrimp partners. Mol Ecol 14:3557–3572

    Article  CAS  PubMed  Google Scholar 

  • Todd CD, Lambert WJ, Thorpe JP (1998) The genetic structure of intertidal populations of two species of nudibranch molluscs with planktotrophic and pelagic lecithotrophic larval stages: are pelagic larvae ‘‘for’’ dispersal? J Exp Mar Biol Ecol 228:1–28

    Article  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vitalis R, Dawson K, Boursot P, Belkhir K (2003) DetSel 1.0: a computer program to detect markers responding to selection. J Hered 94:429–431

    Article  CAS  PubMed  Google Scholar 

  • Warner RR, Cowen RK (2002) Local retention of production in marine populations: Evidence, mechanisms, and consequences. Bull Mar Sci 70:245–249

    Google Scholar 

  • Watts PC, Thorpe JP (2006) Influence of contrasting larval developmental types upon the population-genetic structure of cheilostome bryozoans. Mar Biol 149:1093–1101

    Article  Google Scholar 

  • Wehrtmann IS, Albornoz L (2002) Evidence of different reproductive traits in the transisthmian sister species, Alpheus saxidomus and A. simus (Decapoda, Caridea, Alpheidae): description of the first postembryonic stage Mar Biol 140:605–612

    Article  Google Scholar 

  • Williams ST, Knowlton N (2001) Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Mol Biol Evol 18:1484–1493

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Knowlton N, Weigt LA, Jara JA (2001) Evidence for three major clades within the snapping shrimp genus Alpheus inferred from nuclear and mitochondrial gene sequence data. Mol Phylogenet Evol 20:375–389

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Jara J, Gomez E, Knowlton N (2002) The marine Indo-West Pacific break: contrasting the resolving power of mitochondrial and nuclear genes. Integr Comp Biol 42:941–952

    Article  CAS  PubMed  Google Scholar 

  • Williamson DI (1969) Names of larvae in the Decapoda and Euphausiacea. Crustaceana 16:210–213

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young AM, Torres C, Mack JE, Cunningham CW (2002) Morphological and genetic evidence for vicariance and refugium in Atlantic and Gulf of Mexico populations of the hermit crab Pagurus longicarpus. Mar Biol 140:1059–1066

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to the Tropical Research Laboratory, the Discovery Bay Marine Laboratory, and the Bermuda Biological Station for Research for logistic support, and to the government of Bermuda (permit no. SP050601) and to the National Environment and Planning Agency of Jamaica for granting me permission to collect and export snapping shrimp. I thank L. Houle and W. Durgin for technical assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren M. Mathews.

Additional information

Communicated by J. P. Grassle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathews, L.M. Evidence for restricted gene flow over small spatial scales in a marine snapping shrimp Alpheus angulosus . Mar Biol 152, 645–655 (2007). https://doi.org/10.1007/s00227-007-0718-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0718-9

Keywords

Navigation