Marine Biology

, Volume 151, Issue 5, pp 1813–1821 | Cite as

Patterns and UV sensitivity of carbon anhydrase and nitrate reductase activities in south Pacific macroalgae

  • P. HuovinenEmail author
  • I. Gómez
  • M. Orostegui
Research article


This study describes the activities of the key enzymes involved in carbon incorporation (carbonic anhydrase, CA) and inorganic nitrogen reduction (nitrate reductase, NR) in 25 intertidal macroalgae of southern Chile (39°S). UV radiation as a factor affecting the nutrient metabolism of algae was also examined. The results of the enzyme activities and the UV sensitivity were related to the position of the algae on the shore, species/taxonomic groups and morpho-functional patterns. The CA activity in the studied algae ranged from 42 to 165 REA g−1 FW, and was neither related to growing depth nor to taxonomic or morpho-functional groups. The NR activities ranged from 0.1 to 8.9 μmol NO 2  g−1 FW min−1, with the highest levels observed in red algae. In contrast to CA, the NR activities showed a decreasing tendency from supra/midlittoral to infra/sublittoral. Also, differences between morpho-functional groups were seen. The impact of artificial UV radiation on CA and NR activities was variable as in some species it provoked an increase while in other species a decrease was observed, suggesting species-specific responses and UV sensitivity. The CA activity was the most UV sensitive in the taxonomic group Chlorophyta and in the supralittoral algae. The UV sensitivity of NR activity could not be related to any patterns related to morpho-functional or taxonomic groups and habitat depth.


Carbonic Anhydrase Macroalgae Nitrate Reductase Nitrate Reductase Activity Carbonic Anhydrase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by CONICYT-Chile (FONDECYT 7050062 to I.G.) and the Academy of Finland (202398 to P.H.).


  1. Arcos D, Peña H, Núñez S, Ortiz J, Furet L, Figueroa S, Sepúlveda A, Rebolledo H, Castillo J, Turner A, González H, Valenzuela G, Menschel E (2000) Determinación de la capacidad de carga de las zonas estuarinas de los Rios Valdivia y Bueno (X Región). Valdivia. Technical Report FIP 2000-29, Instituto de Investigación Pesquera, Talcahuano, ChileGoogle Scholar
  2. Badger MR (1987) The CO2 concentration mechanism in aquatic phototrophs. In: Hatch MD, Boardman NK (eds) The biochemistry of plants: a comprehensive treatise, vol 10. Academic, San Diego, pp 219–274Google Scholar
  3. Badger MR, Price GD (1992) The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiol Plant 84:606–615CrossRefGoogle Scholar
  4. Beardall J, Heraud P, Roberts S, Shelly K, Stojkovic S (2002) Effects of UV-B radiation on inorganic carbon acquisition by the marine microalga Dunaliella tertiolecta (Chlorophyceae). Phycol 41:268–272CrossRefGoogle Scholar
  5. Berges JA (1997) Minireview: algal nitrate reductases. Eur J Phycol 32:3–8CrossRefGoogle Scholar
  6. Corzo A, Niell FX (1991) Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method. J Exp Mar Biol Ecol 146:181–191CrossRefGoogle Scholar
  7. Corzo A, Niell FX (1994) Nitrate–reductase activity and in vivo nitrate-reduction rate in Ulva rigida illuminated by blue light. Mar Biol 120:17–23Google Scholar
  8. Davison IR, Stewart WDP (1983) Occurrence and significance of nitrogen transport in the brown alga Laminaria digitata. Mar Biol 77:107–112CrossRefGoogle Scholar
  9. Davison IR, Andrews M, Stewart DP (1984) Regulation of growth in Laminaria digitata: use of in vivo nitrate reductase activities as an indicator of nitrogen limitation in field populations of Laminaria spp. Mar Biol 84:207–217CrossRefGoogle Scholar
  10. Döhler G (1996) Effect of UV irradiance on utilization of inorganic nitrogen by the Antarctic diatom Odontella weissflogii (Janisch) Grunow. Bot Acta 109:35–42CrossRefGoogle Scholar
  11. Döhler G, Hagmeier E, David C (1995) Effects of solar and artificial UV irradiation on pigments and assimilation of 15N ammonium and 15N nitrate by macroalgae. J Photochem Photobiol B Biol 30:179–187CrossRefGoogle Scholar
  12. Figueroa FL, Viñegla B (2001) Effects of solar UV radiation on photosynthesis and enzyme activities (carbonic anhydrase and nitrate reductase) in marine macroalgae from southern Spain. Rev Chi Hist Nat 74:237–249Google Scholar
  13. Flores-Moya A, Gómez I, Viñegla B, Altamirano M, Pérez-Rodríguez E, Maestre C, Caballero RM, Figueroa FL (1998) Effects of solar radiation on the endemic Mediterranean red alga Rissoella verruculosa: photosynthetic performance, pigment content and the activities of enzymes related to nutrient uptake. New Phytol 139:673–684 CrossRefGoogle Scholar
  14. Gao Y, Smith GJ, Alberte RS (1992) Light regulation of nitrate reductase in Ulva fenestrata (Chlorophyceae) I. Influence of light regimes on nitrate reductase activity. Mar Biol 112:691–696CrossRefGoogle Scholar
  15. Gómez I, Pérez-Rodríguez E, Viñegla B, Figueroa FL, Karsten U (1998) Effects of solar radiation on photosynthesis, UV-absorbing compounds and enzyme activities of the green alga Dasycladus vermicularis from southern Spain. J Photochem Photobiol B Biol 47:46–57CrossRefGoogle Scholar
  16. Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen C, Huovinen P, Hess S (2004) Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar Ecol Prog Ser 270:103–116CrossRefGoogle Scholar
  17. Gómez I, Ulloa N, Orostegui M (2005) Morpho-functional patterns of photosynthesis and UV sensitivity in the kelp Lessonia nigrescens (Laminariales, Phaeophyta). Mar Biol 148:231–240CrossRefGoogle Scholar
  18. Haglund K, Ramazanov Z, Mtolera M, Pedersen M (1992) Role of external carbonic anhydrase in light-dependent alkalization by Fucus serratus L. and Laminaria saccharina (L.) Lamour (Phaeophyta). Planta 188:1–6CrossRefGoogle Scholar
  19. Huovinen P, Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen C (2004) Ultraviolet-absorbing mycosporine-like amino acids in red macroalgae from Chile. Bot Mar 47:21–29CrossRefGoogle Scholar
  20. Huovinen P, Gómez I, Lovengreen C (2006) A five-year study of solar ultraviolet radiation in southern Chile (39°S): potential impact on physiology of coastal marine algae? Photochem Photobiol 82:515–522CrossRefGoogle Scholar
  21. Hurd CL, Berges JA, Osborne J, Harrison PJ (1995) An in vitro nitrate reductase assay for marine macroalgae: optimatization and characterization of the enzyme for Fucus gardneri (Phaeophyta). J Phycol 31:835–843CrossRefGoogle Scholar
  22. Johnston AM, Maberly SC, Raven JA (1992) The acquisition of inorganic carbon by four red macroalgae. Oecologia 92:317–326CrossRefGoogle Scholar
  23. Kumar A, Sinha RP, Häder DP (1996) Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc calcicola. J Plant Physiol 148:86–91CrossRefGoogle Scholar
  24. Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44CrossRefGoogle Scholar
  25. Lopes PF, Santa-Maria UF, Colepicolo P (2002) Effect of light quality on the circadian expression of nitrate reductase in the red macroalga Gracilaria tenuistipitata. Biol Rhythm Res 33:391–400CrossRefGoogle Scholar
  26. Madsen TV, Maberly SC (1990) A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). J Phycol 26:24–30CrossRefGoogle Scholar
  27. Mercado JM, Gordillo FJ, Figueroa FL, Niell FX (1998) External carbonic anhydrase and affinity for organic carbon in intertidal macroalgae. J Exp Mar Biol Ecol 221:209–220CrossRefGoogle Scholar
  28. Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants. Plant Cell Environ 24:141–153CrossRefGoogle Scholar
  29. Reinfelder JR, Kraepiel AM, Morel FM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999CrossRefGoogle Scholar
  30. Roth NC, Pregnall AM (1988) Nitrate reductase activity in Zostera marina. Mar Biol 99:457–463CrossRefGoogle Scholar
  31. Sinha RP, Singh N, Kumar A, Kumar HD, Häder M, Häder DP (1995) Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria. J Photochem Photobiol B Biol 30:107–113 Google Scholar
  32. Snell FD, Snell CT (1949) Colorimetric methods of analysis, 3rd edn. Van Norstrand, Princeton, p 804Google Scholar
  33. Thomas TE, Harrison PJ (1985) Effect of nitrogen supply on nitrogen uptake, accumulation and assimilation in Porphyra perforata (Rhodophyta). Mar Biol 85:269–278CrossRefGoogle Scholar
  34. Thomas TE, Harrison PJ (1988) A comparison of in vitro and in vivo nitrate reductase assays in three intertidal seaweeds. Bot Mar 31:101–107Google Scholar
  35. Thompson SM, Valiela I (1999) Effect of nitrogen loading on enzyme activity of macroalgae in estuaries in Waquoit Bay. Bot Mar 42:519–529CrossRefGoogle Scholar
  36. Thomas TE, Harrison PJ, Turpin DH (1987) Adaptations of Gracilaria pacifica (Rhodophyta) to nitrogen procurement at different intertidal locations. Mar Biol 93:569–580CrossRefGoogle Scholar
  37. Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20CrossRefGoogle Scholar
  38. Viñegla B, Segovia M, Figueroa FL (2006) Effect of artificial UV radiation on carbon and nitrogen metabolism in the macroalgae Fucus spiralis L. and Ulva olivascens Dangeard. Hydrobiologia 560:31–42CrossRefGoogle Scholar
  39. Wilbur KM, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 30:541–547Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
  2. 2.Instituto de Biología MarinaUniversidad Austral de ChileValdiviaChile
  3. 3.Centro de Investigación y Desarrollo de Recursos y Ambientes Costeros (i-mar)Universidad de Los LagosPuerto MonttChile

Personalised recommendations