Skip to main content
Log in

The systematic position of some boring sponges (Demospongiae, Hadromerida) studied by molecular analysis

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A phylogenetic analysis of some bioeroding sponges of the family Clionaidae (Order Hadromerida) was performed to resolve some taxonomic problems both at the specific and the supraspecific level using the D2 and D3 regions of 28S rDNA. Species belonging to the genera Cliona, Cliothosa, Spheciospongia (fam. Clionaidae) and Diplastrella (fam. Spirastrellidae) from the Mediterranean Sea and Celebes Sea (Indonesia) were analysed. In the phylogenetic tree, the species clustered on two main branches, one comprising Cliona celata, C. rhodensis, C. utricularis, and Cliothosa hancocki, and the other made up of C. viridis, C. nigricans, C. schmidti, C. jullieni, Spheciospongia solida and S. vagabunda. Above the species level, data do not support the separation of the genus Cliothosa from Cliona, while they do support the inclusion of some massive boring species, previously assigned to the genus Spirastrella, in the family Clionaidae. At the species level, data demonstrated the genetic identity of taxa C. viridis and C. nigricans, in spite of their considerable morphological differences. In contrast, the yellow species commonly attributed to C. celata are probably to be considered as a complex of sibling species with a number of distinct taxa present in the Mediterranean. Data also showed the identity of the Mediterranean and Pacific populations of C. schmidti, suggesting the status of a Tethyan relict for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barbieri M, Bavestrello G, Sarà M (1995) Morphological and ecological differences in two electrophoretically detected species of Cliona (Porifera: Demospongiae). Biol J Linn Soc 54:193–200

    Google Scholar 

  • Bayer FM (1964) The genus Corallium (Gorgonacea: Scleraxonia) in the Western North Atlantic Ocean. Bull Mar Sci 14:465–478

    Google Scholar 

  • Bavestrello G, Calcinai B, Cerrano C, Pansini M, Sarà M (1996) The taxonomic status of some Mediterranean clionids (Porifera, Demospongiae) according to morphological and genetic characters. Bull Inst Royal Sci Nat Belgique 66:185–195

    Google Scholar 

  • Borchiellini C, Chombard C, Lafay B, Boury-Esnault N (2000) Molecular systematics of sponges (Porifera). Hydrobiologia 420:15–27

    Article  CAS  Google Scholar 

  • Bromley RG, D’Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of Southern Italy. Riv Ital Pal Strat 90:227–296

    Google Scholar 

  • Calcinai B, Cerrano C, Sarà M, Bavestrello G (2000) Boring sponges (Porifera, Demospongiae) from the Indian Ocean. Ital J Zool 67:203–219

    Article  Google Scholar 

  • Calcinai B, Cerrano C, Bavestrello G (2002) A new species of Scantiletta (Demospongiae, Clionaidae) from the Mediterranean precious red coral with some remarks on the genus. Bull Mar Sci 70:919–926

    Google Scholar 

  • Calcinai B, Azzini F, Bavestrello G, Iwasaki N, Cerrano C (2004) Redescription of Alectona verticillata (Johnson) (Porifera, Alectonidae) boring into Japanese precious coral. Ital J 71:337–339

    Google Scholar 

  • DeSalle R, Wray C, Absher R (1994) Computational problems in molecular systematics. In: Schierwater B, Streit B, Wagner GP, Desalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhäuser, Basel, pp. 353–370

    Chapter  Google Scholar 

  • Giribet G, Wheeler WC (1999) On gaps. Mol Phylogenet Evol 13:132–143

    Article  CAS  Google Scholar 

  • Kelly-Borges M, Bergquist PR, Bergquist PL (1991) Phylogenetic relationships within the order Hadromerida (Porifera, Demospongiae, Tetractinomorpha) as indicated by ribosomal RNA Sequence comparisons. Bioch Syst Ecol 19:117–125

    Article  CAS  Google Scholar 

  • Kuo J, McComb AJ (1989) A treatise on the biology of seagrasses with special reference to the Australian region. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Aquatic plant studies 2. Elsevier, Amsterdam, pp 6–73

    Google Scholar 

  • Klautau M, Russo CAM, Lazoski C, Boury-Esnault N, Thorpe JP, Solé-Cava AM (1999) Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53(5):1414–1422

    Article  Google Scholar 

  • Lazoski C, Solé-Cava AM, Boury-Esnault N, Klautau M, Russo CAM (2001) Cryptic speciation in a high gene flow scenario in the oviparous marine sponge Chondrosia reniformis. Mar Biol 139(3):421–429

    Article  CAS  Google Scholar 

  • Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93

    Article  CAS  Google Scholar 

  • Nichols SA (2005) An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. Mol Phylogenet Evol 34(1):81–96

    Article  CAS  Google Scholar 

  • Pang RK (1973) The systematics of some Jamaican excavating sponges (Porifera). Postilla Peabody Mus Yale Univ 161:1–75

    Google Scholar 

  • Phillips A, Janies D, Wheeler W (2000) Multiple sequence alignment in phylogenetic analysis. Mol Phylogenet Evol 16:317–330

    Article  CAS  Google Scholar 

  • Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301– 319

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  Google Scholar 

  • Rodriguez F, Oliver JF, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitutions. J Theor Biol 142:485–501

    Article  CAS  Google Scholar 

  • Rosell D, Uriz MJ (1991) Cliona viridis (Schmidt, 1862) and Cliona nigricans (Schmidt, 1862) (Porifera, Hadromerida): evidence which shows they are the same species. Ophelia 33:45–53

    Article  Google Scholar 

  • Rosell D, Uriz MJ (1997) Phylogenetic relationships within the excavating Hadromerida (Porifera), with a systematic revision. Cladistics 13:349–366

    Article  Google Scholar 

  • Rosell D, Uriz MJ (2002) Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Org Divers Ecol 2:55–86

    Article  Google Scholar 

  • Rützler K (1973) Clionid sponges from the coast of Tunisia. Bull Inst Natl Sci Tech Oceanogr Peche Salammbö 2:623–636

    Google Scholar 

  • Rützler K (1974) The burrowing sponges of Bermuda. Smithson Contrib Zoo 165:1–32

    Article  Google Scholar 

  • Rützler K (2002) Family Clionaidae D’Orbigny, 1851. In: Hooper JNA, Soest RWM Van (eds) Sistema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum, New York, pp 173–185

    Chapter  Google Scholar 

  • Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Ecol 21:144–162

    Google Scholar 

  • Schmidt O (1862) Die Spongien des adriatischen Meeres. Wilhelm Engelmann, Leipzig, 88 pp

  • Schönberg CHL (2000) Bioeroding sponges common to the Central Australian Great Barrier Reef: description of three new species, two new records, and additions to two previously described species. Senckenbergiana Marit 30:161–221

    Article  Google Scholar 

  • Solé-Cava AM, Klautau M, Boury-Esnault N, Borojevic, Thorpe JP (1991) Genetic evidence for cryptic speciation in allopatric populations of two cosmopolitan species of the calcareous sponge genus Clathrina. Mar Biol. 111:381–386

    Article  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (* and other methods) version 4. Sinauer Associates, Sunderland, MA

  • Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285

    CAS  PubMed  Google Scholar 

  • Tavare S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lec Math Life Sci 17:57–86

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Topsent E (1900) Etude monographique des spongiaires de France, III Monaxonida (Hadromerida). Arch Zoo Exp Gén 3 Sér 8:1–331

    Google Scholar 

  • Whitting MF, Carpenter JM, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequence and morphology. Syst Biol 46:1–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Bavestrello.

Additional information

Communicated by R.Cattaneo-Vietti, Genova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barucca, M., Azzini, F., Bavestrello, G. et al. The systematic position of some boring sponges (Demospongiae, Hadromerida) studied by molecular analysis. Mar Biol 151, 529–535 (2007). https://doi.org/10.1007/s00227-006-0486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0486-y

Keywords

Navigation