Skip to main content
Log in

Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In zooxanthellate corals, the photosynthetic fixation of carbon dioxide and the precipitation of CaCO3 are intimately linked both spatially and temporally making it difficult to study carbon transport mechanisms involved in each pathway. When studying Tubastrea aurea, a coral devoid of zooxanthellae, we can focus on carbon transport mechanisms involved only in the calcification process. We performed this study to characterize T. aurea carbonic anhydrase and to determine its role in the calcification process. We have shown that inhibition of tissular carbonic anhydrase activity affects the calcification rate. We have measured the activity of this enzyme both in the tissues and in the organix matrix extracted from the skeleton. Our results indicate that organic matrix proteins, which are synthesized by the calcifying tissues, are not only structural proteins, but they also play a crucial catalytic role by eliminating the kinetic barrier to interconversion of inorganic carbon at the calcification site. By immunochemistry we have demonstrated the presence of a protein both in the tissues and in the organic matrix, which shares common features with prokaryotic carbonic anhydrases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CA:

Carbonic anhydrase

BSA:

Bovine serum albumin

DIC:

Dissolved inorganic carbon

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetate

FSW:

Filtered seawater

PBS:

Phosphate buffered saline

PAF:

Paraformaldehyde

PIC:

Protease inhibitor cocktail

RT:

Room temperature

SOM:

Soluble organic matrix

SDS:

Sodium dodecyl sulphate

TBS:

Tris buffered saline

DIC:

Dissolved inorganic carbon

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143

    Article  CAS  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    Article  CAS  Google Scholar 

  • Allemand D, Grillo M-C (1992) Biocalcification mechanisms in gorgonians. 45Ca uptake and deposition by the mediterranean red coral Corallium rubrum. J Exp Zool 292:237–246

    Article  Google Scholar 

  • Borelli G, Mayer-Gostan N, Merle P-L, de Pontual H, Boeuf G, Allemand D, Payan P (2003) Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph. Calcified Tissue Int 72:717–725

    Article  CAS  Google Scholar 

  • Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225

    Google Scholar 

  • Constantz BR. (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1:152–157

    Article  Google Scholar 

  • Constantz B, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248:253–258

    Article  CAS  Google Scholar 

  • Cox EH, McLendon GL, Morel F, Lane T, Prince RC, Pickering IJ, George GN (2000) The active site of Thalassiosira weissflogii carbonic anhydrases 1. Biochem 39:12128–12130

    Article  CAS  Google Scholar 

  • Cuif JP, Dauphin Y, Doucet J, Salome M, Susini J (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67:75–83

    Article  CAS  Google Scholar 

  • Cuif JP, Dauphin Y, Gautret P (1999) Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization and diagenesis. Int J Earth Sci 88:582–592

    Article  CAS  Google Scholar 

  • Dauphin Y (2001) Comparative studies of skeletal soluble matrices from some Scleractinian corals and Molluscs. Int J Biol Macromol 28:293–304

    Article  CAS  PubMed  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  PubMed  Google Scholar 

  • Gautret P, Cuif JP, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36:189–194

    Article  Google Scholar 

  • Gautret P, Cuif JP, Stolarski J (2000) Organic components of the skeleton of scleractinian corals—evidence from in situ acridine orange staining. Acta Palaeontol Pol 45:107–118

    Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull Mar Biol Lab Woods Hole 116:59–75

    Article  CAS  Google Scholar 

  • Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. Chembiochem 4:522–529

    Article  CAS  PubMed  Google Scholar 

  • Heatfield BM (1970) Calcification in echinoderms: effects of temperature and acetazolamide on incorporation of calcium-45 in vitro by regenerating spines of Strongylocentrotus purpuratus. Biol Bull 139:151–163

    Article  CAS  PubMed  Google Scholar 

  • Hewett-Emmet D, Tashian RE (1996) Functional diversity, conservation and convergence in the evolution of the α-,β-,γ,-carbonic anhydrase gene families. Mol Phylogen Evol 5:50–77

    Article  Google Scholar 

  • Isa Y, Yamazato K (1984) The distribution of carbonic anhydrase in a staghorn coral Acropora hebes (Dana). Galaxea 3:25–36

    CAS  Google Scholar 

  • Jones WC, Ledger PW (1986) The effect of acetazolamide and various concentrations of calcium on spicule secretion in the calcareous sponge Sycon ciliatum. Comp Biochem Physiol 84A:149–158

    Article  CAS  Google Scholar 

  • Kingsley RJ, Watabe N (1987) Role of carbonic anhydrase in calcification in the gorgonian Leptogorgia virgulata. J Exp Zool 241:171–180

    Article  CAS  Google Scholar 

  • Kono M, Hayashi N, Samata T (2000) Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Comm 269:213–218

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lane TW, Morel F (2000) A biological function for cadmium in marine diatoms. PNAS 97(9):4627–4631

    Article  CAS  PubMed  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel MM (2005) A cadmium enzyme from a marine diatom. Nature 435(7038):42

    Article  CAS  Google Scholar 

  • Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004). Nitrogen-fixing cyanobacteria in corals. Science 305:997–1000

    Article  CAS  PubMed  Google Scholar 

  • Lucas JM, Knapp LW (1996) Biochemical characterization of purified carbonic anhydrase from the octocoral Leptogorgia virgulata. Mar Biol 126:471–477

    Article  CAS  Google Scholar 

  • Lucas JM, Knapp LW (1997) A physiological evaluation of carbon sources for calcification in the octocoral Leptogorgia virgulata (Lamarck). J Exp Biol 200:2653–2662

    CAS  PubMed  Google Scholar 

  • Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271:637–639

    Article  CAS  Google Scholar 

  • Mitsunaga K, Akasaka K, Shimada H, Fujino Y, Yasumasu I, Numandi H (1986) Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules. Cell Differ 18:257–262

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93:9657–9660

    Article  CAS  PubMed  Google Scholar 

  • Nys Y, de Laage X (1984) Effects of suppression of egg shell calcification and of 1,25 (OH)2D3 on Mg2+, Ca2+ and Mg2+ HCO 3 ATPase, alkaline phosphatase, carbonic anhydrase and CaBP levels. II. The laying intestine. Comp Biochem Physiol 78A:839–844

    Article  CAS  Google Scholar 

  • Payan P, Kossmann H, Watrin A, Mayer-Gostan N, Boeuf G (1997) Ionic composition of endolymph in teleosts: origin and importance of endolymph alkalinity. J Exp Biol 200:1905–1912

    CAS  PubMed  Google Scholar 

  • Pearse VB (1970) Incorporation of metabolic CO2 into coral skeleton. Nature 228:383

    Article  CAS  PubMed  Google Scholar 

  • Puverel S, Tambutté E, Zoccola D, Domart-Coulon I, Bouchot A, Lotto S, Allemand D, Tambutté S (2005) Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24:149–156

    Article  Google Scholar 

  • Rahman A, Isa Y, Uehara T (2005). Proteins of calcified endoskeleton. II. partial amino acid sequences of endoskeletal proteins and the characterization of proteinaceous organic matrix of spicules from the alcyonarian, Synularia polydactyla. Proteomics 5:1–9

    Article  Google Scholar 

  • Rahman A, Isa Y, Uehara T (2006). Studies of two closely related species of Octocorallians: biochemical and molecular characteristics of the organic matrices of endoskeletal sclerites. Mar Biotech 8:415–424

    Article  CAS  Google Scholar 

  • Richier S, Merle PL, Furla P, Pigozzi D, Sola F, Allemand D (2003) Characterization of superoxide dismutases in anoxia- and hyperoxia-tolerant symbiotic cnidarians. Biochim Biophys Acta 1621(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Roer RD (1980) Mechanisms of resorption and deposition of calcium in the carapace of the crab Carcinus maenas. J Exp Biol 88:205–218

    CAS  Google Scholar 

  • Sasakura Y, Nakashima K, Awazu S, Matsuoka T, Nakayama A, Azuma J, Satoh N (2005) Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthetase in the ascidian Ciona intestinalis. PNAS 102(42):15134–15139

    Article  CAS  PubMed  Google Scholar 

  • Sikes CS, Roer RD, Wilbur KM (1980) Photosynthesis and cocolith formation: Inorganic carbon sources and net inorganic reaction of deposition. Limnol Oceanogr 25:248–261

    Article  CAS  Google Scholar 

  • Tambutté E, Allemand D, Bourge I, Gattuso J-P, Jaubert J (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459

    Article  Google Scholar 

  • Tambutté É, Allemand D, Mueller E, Jaubert J (1996) A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 199:1029–1041

    Google Scholar 

  • Technau U, Rudd S, Maxwell P, Gordon PMK, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller D (2005) Maintenance and ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21(12):633–639

    Article  CAS  PubMed  Google Scholar 

  • Tohse H, Ando H, Mugiya Y (2004) Biochemical properties and immunohistochemical localization of carbonic anhydrase in the sacculus of the inner ear in the salmon Oncorhyncus masou. Comp Biochem Physiol 137A:87–94

    Article  CAS  Google Scholar 

  • Tohse H, Mugiya Y (2001) Effects of enzyme and anion transport inhibitors on in vitro incorporation of inorganic carbon and calcium into endolymph and otoliths in salmon Oncorhynchus masou. Comp Biochem Physiol 128A:177–184

    Article  CAS  Google Scholar 

  • Waheed A, Zhu XL, Sly WS (1992) Membrane-associated carbonic anhydrase from rat lung. J Biol Chem 267:3308–3311

    CAS  PubMed  Google Scholar 

  • Watanabe T, Fukuda I, China K, Isa Y (2003) Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp Biochem Physiol 136B:767–774

    Article  CAS  Google Scholar 

  • Weiner S (1984) Organization of organic matrix components in mineralized tissues. Amer Zool 24:945–951

    Article  CAS  Google Scholar 

  • Weis VM, Reynolds WS (1999) Carbonic anhydrase expression and synthesis in the sea anemone Anthopleura elegantissima are enhanced by the presence of dinoflagellate symbionts. Physiol Biochem Zool 72:307–316

    Article  CAS  PubMed  Google Scholar 

  • Weis VM, Smith GJ, Muscatine L (1989) A “CO2 supply” mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Mar Biol 100:195–202

    Article  CAS  Google Scholar 

  • Wheeler AP, Sikes CS (1984) Regulation of carbonate calcification by organic matrix. Am Zool 24:933–944

    Article  CAS  Google Scholar 

  • Wilbur KM, Jodrey LH (1955) Studies on shell formation. V. The inhibition of shell formation by carbonic anhydrase inhibitors. Biol Bull 108:359–365

    Article  CAS  Google Scholar 

  • Wilson JM, Randall DJ, Vogl AW, Harris J, Sly WS, Iwama GK (2000) Branchial carbonic anhydrase is present in the dogfish, Squalus acanthias. Fish Physiol Biochem 22:329–336

    Article  CAS  Google Scholar 

  • Wright OP, Marshall AT (1991) Calcium transport across the isolated oral epithelium of scleractinian corals. Coral Reefs 10:37–40

    Article  Google Scholar 

  • Yule AB, Crisp DJ, Cotton IH (1982) The action of acetazolamide on calcification in juvenile Balanus balanoides. Mar Biol Lett 3:273–288

    CAS  Google Scholar 

  • Zoccola D, Tambutté E, Kulhanek E, Puverel S, Scimeca J-C, Allemand D Tambutté S (2004). Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochim Biophys Acta 1663:117–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. François Morel from Princeton University and Mak Saïto from the Woods Hole Oceanographic Institution for providing the antibody, anti-β-carbonic anhydrase from Synecchococcus sp. This study was conducted as part of the Centre Scientifique de Monaco 2000–2004 research program. It was supported by the Government of the Principality of Monaco and by the California Institute of Technology, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Tambutté.

Additional information

Communicated by S.A. Poulet, Roscoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tambutté, S., Tambutté, E., Zoccola, D. et al. Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea . Mar Biol 151, 71–83 (2007). https://doi.org/10.1007/s00227-006-0452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0452-8

Keywords

Navigation