Marine Biology

, Volume 150, Issue 6, pp 1093–1101 | Cite as

Transparent exopolymer particles in a deep-sea hydrothermal system: Guaymas Basin, Gulf of California

  • L. PrietoEmail author
  • J. P. Cowen
Research Article


This is the first report of transparent exopolymer particle (TEP) concentrations within deep-sea hydrothermal vent systems using colorimetric methods, measuring TEP in supernatants of sediments surrounding the vents, in fluids emanating directly from hydrothermal vents and in neutrally buoyant hydrothermal plumes. Samples were collected at Guaymas Basin (Gulf of California), a sedimented hydrothermal system. TEP concentrations within the hydrothermal fluids were significantly greater than the only other report of TEP in deep water. The range of values for TEP abundance were 8–6,451 μg/L of gum xanthan equivalents, the highest values being associated with supernatants of microbial mat-covered sediments. The potential sources and significance of the high concentrations of TEP observed in this deep-sea hydrothermal environment are discussed.


Particulate Organic Carbon Okinawa Trough Hydrothermal Vent Niskin Bottle Buoyant Plume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to scientific fellows involved in the campaign for their assistance, and to the captain and crew of the R/V Atlantis and the pilots of the ALVIN for support and their excellent mood in the field. L.P. Acknowledges Dr. J. Marra for his support to do this research. This work was funded by NSF OCE-0095297 (JPC) and NASA-NAI (JPC, JM), a Spanish MECD postdoctoral fellowship to L.P. at Lamont Doherty Earth Observatory of Columbia University and a research grant to L.P. by Consejería de Educación y Ciencia (Junta de Andalucía). Lamont Doherty Earth Observatory contribution 6946 and SOEST contribution 6812.


  1. Alldredge AL, Gotschalk C (1989) Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep-Sea Res I 36:159–171CrossRefGoogle Scholar
  2. Alldredge AL, Passow U, Logan BE (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res I 40:1131–1140CrossRefGoogle Scholar
  3. Azetsu-Scott K, Passow U (2004) Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean. Limnol Oceanogr 49:741–748CrossRefGoogle Scholar
  4. Baker ET (1998) Patterns of event and chronic hydrothermal venting following a magmatic intrusion: new perspectives from the 1996 Gorda Ridge eruption. Deep-Sea Res I 45:2599–2618CrossRefGoogle Scholar
  5. Campbell A, Gieskes JM, Lupton JE, Lonsdale PF (1988) Manganese geochemistry in the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 52:345–357CrossRefGoogle Scholar
  6. Comita PB, Gagosian RB, Willians PM (1984) Suspended particulate organic material from hydrotermal vent waters at 21°N. Nature 307:450–453CrossRefGoogle Scholar
  7. Cowen JP, Bruland KW (1985) Metal deposits associated with bacteria—implications for Fe and Mn marine biogeochemistry. Deep-Sea Res I 32:253–272CrossRefGoogle Scholar
  8. Cowen JP, Bertram M, Wakeham S, Thomson RE, Lavelle JW, Baker ET, Feely RA (2001) Ascending particle flux from a hydrothermal plume: biogeochemical linkages with the upper water column. Deep-Sea Res I 48:1093–1120CrossRefGoogle Scholar
  9. Cowen JP, Wen X, Popp BN (2002) Methane in aging hydrothermal plumes. Geochim Cosmochim Acta 66:3563–3571CrossRefGoogle Scholar
  10. Cruse AM, Seewald JS (2001) Metal mobility in sediment-covered ridg-crest hydrothermal systems: experimental and theoretical constraints. Geochim Cosmochim Acta 65:3233–3247CrossRefGoogle Scholar
  11. Dam HG, Drapeau DT (1995) Coagulation efficiency, organic-matter glues and the dynamics of particles during a phytoplankton bloom in a mesocosm study. Deep-Sea Res I 42(1):111–123CrossRefGoogle Scholar
  12. DeAngelis MA, Lilley MD, Olson EJ, Baross JA (1993) Methane oxidation in deep-sea hydrothermal plumes of the Endeavour Segment of the Juan de Fuca Ridge. Deep-Sea Res I 40(6):1169–1186CrossRefGoogle Scholar
  13. Edmond JM, Von Damm KL (1985) Chemistry of ridge crest hot springs. Bull Biol Soc Wash 6:43–48Google Scholar
  14. Engel A, Schartau M (1999) Influence of transparent exopolymer particles (TEP) on sinking velocity of Nitzschia closterium aggregates. Mar Ecol Prog Ser 182:69–76CrossRefGoogle Scholar
  15. Engel A, Passow U (2001) Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Mar Ecol Prog Ser 219:1–10CrossRefGoogle Scholar
  16. Feely RA, Massoth GJ, Baker ET, Lebon GT, Geiselman TL (1992) Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions. J Geophys Res 97(B3):3457–3468CrossRefGoogle Scholar
  17. Feely RA, Massoth GJ, Trefry JH, Baker ET, Paulson AJ, Lebon GT (1994) Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge. J Geophys Res 99:4985–5006CrossRefGoogle Scholar
  18. Guo L, Hung CC, Santschi PH, Walsh ID (2002) 234Th scavenging and its relationship to acid polysaccharide abundance in the Gulf of Mexico. Mar Chem 78(2–3):103–119CrossRefGoogle Scholar
  19. Jones RD (1991) An improved fluorescence method for the determination of nanomolar concentrations of ammonium in natural waters. Limnol Oceanogr 36:814–819CrossRefGoogle Scholar
  20. Kahru M, Marinone SG, Lluch-Cota SE, Pares-Sierra A, Greg Mitchel B (2004) Ocean-color variability in the Gulf of California: scales from days to ENSO. Deep-Sea Res II 51(1–3):139–146CrossRefGoogle Scholar
  21. Kiørboe T, Hansen J (1993) Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J Plankton Res 15:993–1018CrossRefGoogle Scholar
  22. Kiørboe T, Hansen JLS, Alldredge AL, Jackson GA, Passow U, Dam HG, Drapeau DT, Waite A, García CM (1996) Sedimentation of phytoplankton during a diatom bloom: rates, mechanisms. J Mar Res 54:1123–1148CrossRefGoogle Scholar
  23. Kumar MD, Sarma VVSS, Ramiaah N, Gauns M, Sousa de SN (1998) Biogeochemical significance of transparent exopolymeric particles in the Indian Ocean. Geophys Res Lett 25:81–84CrossRefGoogle Scholar
  24. Lam P (2005) Microbial ammonia oxidation in deep-sea hydrothermal plumes. PhD thesis, University of Hawai, HonoluluGoogle Scholar
  25. Lam P, Cowen JP, Jones RD (2004) Autotrophic ammonia oxidation in a deep-sea hydrothermal plume. FEMS Microb Ecol 47(2):191–206CrossRefGoogle Scholar
  26. Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Mackos SA, McDuff RE (1993) Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364:45–47CrossRefGoogle Scholar
  27. Maruyama A, Mita N, Higashihara T (1993) Particulate materials and microbial assemblages around the Izena black smoking vent in the Okinawa Trough. J Oceanogr 49(3):353–367CrossRefGoogle Scholar
  28. McLaughlin EA, Olson EJ, Lilley MD, Resing JA, Lupton JE, Baker ET, Cowen JP (1999) Variations in hydrothermal methane and hydrogen concentrations following the 1998 eruption at Axial Volcano. Geophys Res Lett 26:3453–3457CrossRefGoogle Scholar
  29. Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar Ecol Prog Ser 192:1–11CrossRefGoogle Scholar
  30. Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 5:287– 333CrossRefGoogle Scholar
  31. Passow U, Alldredge AL (1994) Distribution, size and bacterial colonization of transparent exopolymer particles. Mar Ecol Prog Ser 113:185–198CrossRefGoogle Scholar
  32. Passow U, Alldredge AL (1995a) A dye-binding assay for the spectrophotometric measurement of transparent exopolymeric particles (TEP). Limnol Oceanogr 40:1326–1335CrossRefGoogle Scholar
  33. Passow U, Alldredge AL (1995b) Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymeric particles (TEP). Deep-Sea Res II 42:99–109CrossRefGoogle Scholar
  34. Passow U, Alldredge AL, Logan BE (1994) The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Res I 41:335–357CrossRefGoogle Scholar
  35. Prieto L, Ruiz J, Echevarría F, García CM, Gálvez JA, Bartual A, Corzo A, Macías D (2002) Scales and processes in the aggregation of diatom blooms. High time resolution and wide size range records in a mesocosm study. Deep-Sea Res I 49:1233–1253CrossRefGoogle Scholar
  36. Quigley MS, Santschi PH, Hung C, Guo L, Honeyman BD (2002) Importance of acid polysaccharides for 234Th complexation to marine organic matter. Limnol Oceanogr 47:367–377CrossRefGoogle Scholar
  37. Raguénès G, Peres A, Ruimy R, Pignet P, Christen R, Loaëc M, Rougeaux H, Garbier B, Guezennec J (1997) Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent. J Appl Microbiol 82:422–430CrossRefGoogle Scholar
  38. Sarradin PM, Caprais JC, Riso R, Kerouel R, Aminot A (1999) Chemical environment of the hydrothermal mussel communities in the Lucky Strike and Menez Gwen vent fields, Mid Atlantic Ridge. Cah Biol Mar 40:93–104Google Scholar
  39. Schuster S, Herndl GJ (1995) Formation and significance of transparent exopolymer particles in the northern Adriatic Sea. Mar Ecol Prog Ser 124:227–236CrossRefGoogle Scholar
  40. Shackelford R (2001) Transparent exopolymer particles (TEP) as a component of hydrothermal plume particle dynamics. Master thesis, University of Hawai, HonoluluGoogle Scholar
  41. Shackelford R, Cowen JP (review) Transparent exopolymer particles (TEP) as a component of hydrothermal plume particle dynamics. Deep-Sea Res I (in review)Google Scholar
  42. Simoneit BRT, Mazurek MA, Brenner S, Crisp PT, Kaplan IR (1979) Organic geochemistry of recent sediments from Guaymas Basin, Gulf of California. Deep Sea-Res I 26(A):879–891CrossRefGoogle Scholar
  43. Tunnicliffe V, Juniper SK (1990) Dynamic character of the hydrothermal vent habitat and the nature of sulfide chimney fauna. Prog Oceanogr 24:1–13CrossRefGoogle Scholar
  44. Van dover CL, Fry B (1994) Microorganisms as food resources at deep-sea hydrothermal vents. Limnol Oceanogr 39:51–57CrossRefGoogle Scholar
  45. Von Damm KL (1990) Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annu Rev Earth Planet Sci 18:173–204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA
  2. 2.Deparment of OceanographyUniversity of HawaiiHonoluluUSA
  3. 3.Instituto de Ciencias Marinas de Andalucía (CSIC)CadizSpain

Personalised recommendations