Skip to main content

Advertisement

Log in

Molecular population structure of the kuruma shrimp Penaeus japonicus species complex in western Pacific

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In a previous study on the kuruma shrimp Penaeus japonicus from the South China Sea, we detected high genetic divergence between two morphologically similar varieties (I and II) with distinct color banding patterns on the carapace, indicating the occurrence of cryptic species. In the present study, we clarify the geographical distribution of the two varieties in the western Pacific by investigating the genetic differentiation of the shrimp from ten localities. Two Mediterranean populations are also included for comparison. Based on the mitochondrial DNA sequence data, the shrimps are separated into two distinct clades representing the two varieties. Variety I comprises populations from Japan and China (including Taiwan), while variety II consists of populations from Southeast Asia (Vietnam, Singapore and the Philippines), Australia and the Mediterranean. Population differentiation is evident in variety II, as supported by restriction profiles of two mitochondrial markers and analysis of two microsatellite loci. The Australian population is genetically diverged from the others, whereas the Southeast Asian and Mediterranean populations show a close genetic relationship. Variety I does not occur in these three localities, while a small proportion of variety II is found along the northern coast of the South China Sea and Taiwan, which constitute the sympatric zone of the two varieties. The present study reveals high genetic diversity of P. japonicus. Further studies on the genetic structure of this species complex, particularly the populations in the Indian Ocean and Mediterranean, are needed not only to understand the evolutionary history of the shrimp, but also to improve the knowledge-based fishery management and aquaculture development programs of this important biological resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baldwin JD, Bass AL, Bowen BW, Clark WH Jr (1998) Molecular phylogeny and biogeography of the marine shrimp Penaeus. Mol Phylogenet Evol 10:399–407

    Article  CAS  PubMed  Google Scholar 

  • Ball AO, Chapman RW (2003) Population genetic analysis of white shrimp Litopenaeus setiferus, using microsatellite genetic markers. Mol Ecol 12:2319–2330

    Article  CAS  PubMed  Google Scholar 

  • Ball AO, Leonard S, Chapman RW (1998) Characterization of (GT)n microsatellites from native white shrimp (Penaeus setiferus). Mol Ecol 7:1251–1253

    CAS  PubMed  Google Scholar 

  • Balss H (1927) Berichte uber die Crustacea Decapoda (Natantia und Anomura). Zoological Results of the Cambridge Expedition to the Suez Canal, 1924, XIV. Trans Zool Soc Lond 22:221–227

    Article  Google Scholar 

  • Banks MA, Eichert W (2000) WHICHRUN (Version 3.2) a computer program for population assignment of individuals based on multilocus genotype data. J Hered 91:87–89

    Article  CAS  PubMed  Google Scholar 

  • Barnard KH (1950) Descriptive catalogue of South African decapod Crustacea. Ann South Afr Mus 38:1–837

    Google Scholar 

  • Barton NH (1989) Founder effect speciation. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer, Sunderland, pp 229–256

    Google Scholar 

  • Bate CS (1888) Report on the Crustacea Macrura collected by H.M.S. “Challenger” during the years 1873–76. Report on the scientific results of the voyage of H.M.S. “Challenger” during the years 1873–76 24:1–942

  • Benzie JAH (1999) Genetic structure of coral reef organisms—ghost of dispersal past. Am Zool 39:131–145

    Article  Google Scholar 

  • Benzie JAH, Ballment E, Forbes AT, Demetriades NT, Sugama K, Haryanti, Moria S (2002) Mitochondrial DNA variation in Indo-Pacific populations of the giant tiger prawn, Penaeus monodon. Mol Ecol 11:2553–2569

    Article  CAS  PubMed  Google Scholar 

  • Bloom AL (1971) Glacial eustatic and isostatic controls of sea level since the last glaciation. In: Turekian KK (ed) The late Cenozoic glacial ages. Yale University Press, New Haven, pp 355–380

    Google Scholar 

  • Brooker AL, Benzie JAH, Blair D, Versini JJ (2000) Population structure of the giant tiger prawn Penaeus monodon in Australian waters, determined using microsatellite markers. Mar Biol 136:149–157

    Article  Google Scholar 

  • Camin JH, Sokal RR (1965) A method for deducing branching sequences in phylogeny. Evolution 19:311–326

    Article  Google Scholar 

  • Castric V, Bernatchez L, Belkhir K, Bonhomme F (2002) Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. Heredity 89:27–35

    Article  CAS  PubMed  Google Scholar 

  • Chaitiamvong S, Supongpan M (eds) (1992) A guide to penaeoid shrimps found in Thai waters. Australian Institute of Marine Science, Townsville, p 77

  • Chan TY (1998) Shrimps and prawns. In: Carpenter KE, Niem VH (eds) FAO Species identification guide for fishery purposes. The living marine resources of the western central Pacific vol 2. FAO, Rome, p 917

  • Chan TY (2004) The “Plesionika rostricrescentis (Bate, 1888)” and “P. lophotes Chace, 1985” species groups of Plesionika Bate, 1888, with descriptions of five new species (Crustacea: Decapoda: Pandalidae). In: Marshall B, Richer de Forges B (eds) Tropical deep-sea benthos vol 23. Mémoires du Muséum national d’Histoire naturelle 191:293–318

  • Chan TY, Crosnier A (1997) Crustacea Decapoda: Deep sea shrimps of the genus Plesionika Bate, 1888 (Pandalidae) from French Polynesia, with descriptions of five new species. In: Crosnier A (ed), Resultats des Campangnes MUSORSTOM vol 18. Mémoires du Muséum national d’Histoire naturelle 176:187–234

  • Chappell J, Omura A, Esat T, McCulloch M, Pandolfi J, Ota Y, Pillans B (1996) Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet Sci Lett 141:227–236

    Article  CAS  Google Scholar 

  • Chu TY (1972) A study on the water exchange between Pacific Ocean and the South China Sea. Acta Ocean Taiwanica 2:11–24

    Google Scholar 

  • Chu KH, Li CP, Tam YK, Lavery S (2003) Application of mitochondrial control region in population genetic studies of the shrimp Penaeus. Mol Ecol Notes 3:120–122

    Article  CAS  Google Scholar 

  • Chu P, Chen Y, Kuninaka A (2005) Seasonal variability of the Yellow Sea/East China Sea surface fluxes and thermohaline structure. Adv Atmo Sci 2:11–24

    Google Scholar 

  • Clark PF (1990) Asian prawns go wild in the Channel. New Sci 125:30

    Google Scholar 

  • Crow J, Kimura M (1965) Evolution in sexual and asexual populations. Am Nat 99:439–450

    Article  Google Scholar 

  • Dall W (1991) Zoogeography of the Penaeidae. Mem Queensland Mus 31:39–50

    Google Scholar 

  • Dall W, Hill J, Rothlisberg PC, Staples DJ (1990) The biology of Penaeidae. In: Blaxter JHS, Southward AJ (eds) Advances in marine biology vol 27. Academic, New York, USA

  • Demetropoulos A, Neocleous D (1969) The fishes and crustaceans of Cyprus. Fisheries Bulletin of the Department of Fisheries, Cyprus 1:3–21

  • Duda TF Jr, Palumbi SR (1999) Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations. Mar Biol 134:705–710

    Article  Google Scholar 

  • Farris A, Wimbush M (1996) Wind-induced Kuroshio intrusion into the South China Sea. J Oceanogr 52:771–784

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fleminger A (1986) The Pleistocene equatorial barrier between the Indian and Pacific Oceans and a likely cause for Wallace’s line. UNESCO Tech Pap Mar Sci 49:84–97

    Google Scholar 

  • Freitas de A, Silva C (1990) Lagostas, Camarões, Caranguejos. In: Fischer W (ed) Fischas FAO de Identificação de Espécies Para Actividades de Pesca. Guía de campo das espécies comerciais marinhas e de águas salobras de Moçambique. FAO, Rome, pp 275–315

    Google Scholar 

  • Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337

    Article  CAS  PubMed  Google Scholar 

  • Galil B, Zenetos A (2002) A sea change—exotics in the eastern Mediterranean. In: Leppäkoski E, Olenin S, Gollasch S (eds) Invasive aquatic species of Europe: distributions, impacts and management. Kluwer Academic Publishers, Dordrecht, pp 325–336

    Chapter  Google Scholar 

  • Galil B, Froglia C, Noël P (2002) CIESM atlas of exotic species in the Mediterranean. In: Briand F (ed) Crustaceans: Decapods and Stomatopods vol 2. CIESM Publishers, Monaco, p 192

  • Gilberto R, Héctor S (2001) Anthropogenic dispersal of decapod crustaceans in aquatic environments. Interciencia 26:282–288

    Google Scholar 

  • Goodman SJ (1997) RST CALC: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and a determining their significance. Mol Ecol 6:881–885

    Article  CAS  Google Scholar 

  • Gopurenko D, Hughes JM, Keenan CP (1999) Mitochondrial DNA evidence for rapid colonisation of the Indo-West Pacific by the mudcrab Scylla serrata. Mar Biol 134:227–233

    Article  Google Scholar 

  • Goudet J (1995) FSTAT version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Grey DL, Dall W, Baker A (eds) (1983) A guide to the Australian penaeid prawns. Northern Territory Government Printing Office, Darwin, Australia, p 140

  • Gruvel A (1928) Répartition géographique de quelques crustacés comestibles sur les côtes d’Egypte et de Syrie. Comptes rendus de la société de biogéographie 5:45–46

    Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Gusmão J, Lazoski CVS, Solé-Cava AM (2000) A new species of Penaeus (Crustacea: Penaeidae) revealed by allozyme and cytochrome oxidase I analysis. Mar Biol 137:435–446

    Article  Google Scholar 

  • Hasegawa M, Kishino H, Yano TA (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Hewitt DR, Duncan PF (2001) Effect of high water temperature on the survival, moulting and food consumption of Penaeus (Marsupenaeus) japonicus (Bate, 1888). Aquacult Res 32:305–313

    Article  Google Scholar 

  • Holthuis LB (1980) Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fisheries Synopsis No. 125, 1:1–271

  • Holthuis LB (1984) Lobsters. In: FAO species identification sheets, western Indian Ocean (Fishery Area 51), FAO, Rome

  • Holthuis LB, Gottlieb E (1958) An annotated list of the decapod Crustacea of the Mediterranean coast of Israel, with an appendix listing the Decapoda of the eastern Mediterranean. Bull Res Counc Isr 7B:1–126

    Google Scholar 

  • Hualkasin W, Sirimontaporn P, Chotigeat W, Quercic J, Phongdara A (2003) Molecular phylogenetic analysis of white prawns species and the existence of two clades in Penaeus merguiensis. J Exp Mar Biol Ecol 296:1–11

    Article  CAS  Google Scholar 

  • Hudinaga M (1935) Studies on the development of Penaeus japonicus (Bate). Hayatomo Fishery Institute Report 1

  • Hudinaga M (1942) Reproduction, development and rearing of Penaeus japonicus Bate. Japan J Zool 10:305–393

    Google Scholar 

  • Jan S, Wang J, Chern CS, Chao SY (2002) Seasonal variation of the circulation in the Taiwan Strait. J Mar Syst 35:249–268

    Article  Google Scholar 

  • Jerry DR, Preston NP, Crocos PJ, Keys S, Meadows JRS, Li Y (2004) Parentage determination of kuruma shrimp Penaeus (Marsupenaeus) japonicus using microsatellite markers (Bate). Aquaculture 235:237–247

    Article  CAS  Google Scholar 

  • Kapiris K (1997) Shrimp culture in Hellas (Greece). Research and development in sustainable coastal aquaculture ecosystems, Unit 4. School of Biological Sciences, UC Irvine

  • Kevrekidis K, Kevrekidis T (1996) The occurrence of Penaeus japonicus in the Aegean Sea. Crustaceana 69:925–929

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Klinbunga S, Penman DJ, McAndrew BJ, Tassanakajon A (1999) Mitochondrial DNA diversity in three populations of the giant tiger shrimp Penaeus monodon. Mar Biotechnol 1:113–121

    Article  CAS  Google Scholar 

  • Klinbunga S, Siludjai D, Wudthijinda W, Tassanakajon A, Jarayabhand P, Menasveta P (2001) Genetic heterogeneity of the giant tiger shrimp (Penaeus monodon) in Thailand revealed by RAPD and mitochondrial DNA RFLP analyses. Mar Biotechnol 3:428–438

    Article  CAS  Google Scholar 

  • Knowlton N (1986) Cryptic and sibling species among the decapod Crustacea. J Crustac Biol 6:356–363

    Article  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189-216

    Article  Google Scholar 

  • Knowlton N, Keller BD (1985) Two more sibling species of alpheid shrimps associated with the Caribbean sea anemones Bartholomea annulata and Heteractis lucida. Bull Mar Sci 37:893–904

    Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B Biol Sci 265:2257–2263

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lavery S, Chan TY, Tam YK, Chu KH (2004) Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s. l. derived from mitochondrial DNA. Mol Phylogenet Evol 31:39–49

    Article  CAS  PubMed  Google Scholar 

  • Lefébure T, Douady CJ, Gouy M, Gibert J (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol (in press)

  • Liao IC, Chien YH (1994) Culture of kuruma prawn (Penaeus japonicus) in Asia. World Aquacult 25(1):18–33

    Google Scholar 

  • Lumare F, Palmegiano GB (1980) Acclimatazione di Penaeus japonicus Bate nella Laguna di Lesina (Italia sud orientale). Rivista Italiana di Piscicoltura e Ittiopatologia 15:53–58

    Google Scholar 

  • Lumare F, Scordella G, Pastore M, Prato E, Zanella L, Tessarin C, Sanna A (2000) Pond management and environmental dynamics in semiextensive culture of Penaeus japonicus (Decapoda, Penaeidae) on the northern Adriatic coast of Italy. Rivista Italiana di Acquacoltura 35:15–43

    Google Scholar 

  • Maggioni R, Rogers AD, Maclean N, D’Incao F (2001) Molecular phylogeny of western Atlantic Farfantepenaeus and Litopenaeus shrimp based on mitochondrial 16S partial sequences. Mol Phylogenet Evol 18:66–73

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • McElroy D, Moran P, Bermingham E, Kornfield I (1991) REAP: The restriction enzyme analysis package, ver 4.0. Department of Zoology, University of Maine, Orono

  • McLaughlin PA (ed) (1980) Comparative morphology of recent Crustacea. WH Freeman, San Francisco

  • McMillen-Jackson AL, Bert TM (2003) Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern United States. Mol Ecol 12:2895–2905

    Article  CAS  PubMed  Google Scholar 

  • McMillen-Jackson AL, Bert TM (2004) Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum. J Crustac Biol 24:101–109

    Article  Google Scholar 

  • Merril CR, Switzer RC, Van Keuren ML (1979) Trace polypeptides in cellular extracts and human body fluid detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc Natl Acad Sci USA 76:4335–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake S (1998) Japanese crustacean decapods and stomatopods in color. 1. Macrura, Anomura and Stomatopoda. Hoiksuha, Osaka, p 261

    Google Scholar 

  • Monod T (1930) Über einige indo-pazifischer Decapoden der Meeresfauna Syriens. Zool Anz 92:135–141

    Google Scholar 

  • Moore SS, Whan V, Davis GP, Byrne K, Hetzel DJS, Preston N (1999) The development and application of genetic markers for the kuruma prawn Penaeus japonicus. Aquaculture 173:19–32

    Article  CAS  Google Scholar 

  • Morton B, Blackmore G (2001) South China Sea. Mar Pollut Bull 42:1236–1263

    Article  CAS  PubMed  Google Scholar 

  • Motoh H (ed) (1980) Field guide for the edible Crustacea of the Philippines. SEAFDEC Aquaculture Department, Iloilo, p 96

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225-233

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269-5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145-163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niino H, Emery KO (1961) Sediments of shallow portions of East China Sea and South China Sea. Geol Soc Am Bull 72:731–762

    Article  Google Scholar 

  • Palumbi SR, Benzie J (1991) Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Mol Mar Biol Biotechnol 1:27–34

    CAS  PubMed  Google Scholar 

  • Pérez Farfante I (1976) A redescription of Penaeus (Melicertus) canaliculatus (Olivier, 1811), a wide-ranging Indo-West Pacific shrimp (Crustacea, Decapoda, Penaeidae). Zoologische Mededelingen 50:23–37

    Google Scholar 

  • Pérez Farfante I, Kensley B (1997) Penaeoid and sergestoid shrimps and prawns of the world. Keys and diagnoses for the families and genera. Mém Mus Natl Hist Nat 175:1–233

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Raymond M, Rousset F (1995b) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roff DA, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphisms: χ2 and the problem of small samples. Mol Biol Evol 6:539–545

    CAS  PubMed  Google Scholar 

  • Rosenberry B (2001) World shrimp farming 2001. Shrimp News International, San Diego

  • Rousset F (1996) Equilibrium values of measure of population subdivision for stepwise mutation processes. Genetics 142:1357–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sbordoni V, DeMatthaeis E, Cobolli Sbordoni M, La Rosa G, Mattoccia M (1986) Bottleneck effects and the depression of genetic variability in hatchery stocks of Penaeus japonicus (Crustacea, Decapoda). Aquaculture 57:239–251

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin Ver 2.000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  • Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Popul Biol 12:253–262

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (eds) (1995) Biometry: The principles and practice of statistics in biological research. WH Freeman and Company, New York

  • Stebbing TRR (1914) South African Crustacea. (Part VII of S. A. Crustacea, for the Marine Investigations in South Africa). Ann South Afr Mus 15:1–55

    Google Scholar 

  • Sturmbauer C, Levinton JS, Christy J (1996) Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. Proc Natl Acad Sci USA 93:10855–10857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugaya T, Ikeda M, Taniguchi N (2002a) Relatedness structure estimated by microsatellites DNA and mitochondrial DNA polymerase chain reaction-restriction fragment length polymorphisms analyses in the wild population of kuruma prawn Penaeus japonicus. Fish Sci 68:793–802

    Article  CAS  Google Scholar 

  • Sugaya T, Ikeda M, Mori H, Taniguchi N (2002b) Inheritance mode of microsatellite DNA markers and their use for kinship estimation in kuruma prawn Penaeus japonicus. Fish Sci 68:299–305

    Article  CAS  Google Scholar 

  • Supungul P, Sootanan P, Klinbunga S, Kamonrat W, Jarayabhand P, Tassanakajon A (2000) Microsatellite polymorphism and the population structure of the black tiger shrimp (Penaeus monodon) in Thailand. Mar Biotechnol 2:339–347

    Article  CAS  Google Scholar 

  • Swofford DL (2000) PAUP*: Phylogenetic analysis using parsimony (*and other methods), ver. 4. Sinauer, Sunderland, MA

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirmizi NW (1971) Marsupenaeus, a new subgenus of Penaeus Fabricius, 1798 (Decapoda, Natantia). Pakistan J Zool 3:193–194

    Google Scholar 

  • Tong JG, Chan TY, Chu KH (2000) A preliminary phylogenetic analysis of Metapenaeopsis (Decapoda: Penaeidae) based on mitochondrial DNA sequences of selected species from the Indo-West Pacific. J Crustac Biol 20:541–549

    Article  Google Scholar 

  • Tsoi KH, Wang ZY, Chu KH (2005) Genetic divergence between two morphologically similar varieties of the kuruma shrimp Penaeus japonicus. Mar Biol 147:367–379

    Article  CAS  Google Scholar 

  • Tzeng TD, Yeh SY (1999) Analysis of the morphometric characters of the kuruma shrimp (Penaeus japonicus) in the East China Sea and the Taiwan Strait. J Fish Soc Taiwan 26:203–212

    Google Scholar 

  • Tzeng TD, Yeh SY (2002) Multivariate allometric comparisons for kuruma shrimp (Penaeus japonicus) off Taiwan. Fish Res 59:279–288

    Article  Google Scholar 

  • Tzeng TD, Yeh SY, Hui CF (2004) Population genetic structure of the kuruma prawn (Penaeus japonicus) in East Asia inferred from mitochondrial DNA sequences. J Mar Sci 61:913–920

    CAS  Google Scholar 

  • Valles-Jimenez R, Cruz P, Perez-Enriquez R (2005) Population genetic structure of Pacific white shrimp (Litopenaeus vannamei) from Mexico to Panama: microsatellite DNA variation. Mar Biotechnol 6:475–484

    Article  CAS  Google Scholar 

  • Valles-Jimenez R, Gaffney PM, Perez-Enriquez R (2006) RFLP analysis of the mtDNA control region in white shrimp (Litopenaeus vannamei) populations from the eastern Pacific. Mar Biol 148:867–873

    Article  CAS  Google Scholar 

  • Vo ST (1998) The hermatypic Scleractinia of South Vietnam. In: Morton B (ed) The marine biology of the South China Sea III. Hong Kong University Press, Hong Kong, pp 11–21

    Google Scholar 

  • Wahlund S (1928) Zusammensetzung von Populationen und Korrelationsers-chinungen von Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106

    Article  Google Scholar 

  • Wang L, Sarnthein M, Erlenkeuser H, Grimalt J, Grootes P, Heilig S, Ivanova E, Kienast M, Pelejero C, Pflaumann U (1999) East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea. Mar Geol 156:245–284

    Article  Google Scholar 

  • Wanna W, Rolland JL, Bonhomme F, Phongdara A (2004) Population genetic structure of Penaeus merguiensis in Thailand based on nuclear DNA variation. J Exp Mar Biol Ecol 311:63–78

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Williams ST, Knowlton N, Weigt LA, Jara JA (2001) Evidence for three major clades within the snapping shrimp genus Alpheus inferred from nuclear and mitochondrial gene sequence data. Mol Phylogenet Evol 20:375–389

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Primavera JH, de la Pena LD, Pettit P, Belak J, Alcivar-Warren A (2001) Genetic diversity of wild and cultured black tiger shrimp (Penaeus monodon) in the Philippines using microsatellites. Aquaculture 199:13–40

    Article  CAS  Google Scholar 

  • Yu HP, Chan TY (eds) (1986) The illustrated penaeoid prawns of Taiwan. Southern Materials Center, Taiwan, pp 88–90

Download references

Acknowledgments

Sincere thanks are given to P.O. Ang Jr., C.C. Cheang (The Chinese University of Hong Kong), S.A. Lehnert (CSIRO Division of Livestock Industries, Australia), P.K.L. Ng (National University of Singapore), J. Primavera (SEAFDEC Aquaculture Department, the Philippines), K. Tanaka (Kyorin University, Japan), K.T. Tai (University of Fishery, Vietnam), Y.H. Yung (The Chinese University of Hong Kong), Z.Y. Wang (Jimei University, China), J. Wong and P.H. Wong (Princess Margaret Hospital, Hong Kong) for collecting specimens. We are indebted to Z.Y. Wang (Jimei University, China), J. Tong (Institute of Hydrobiology, Chinese Academy of Sciences), Y.K. Tam, C.P. Li and W. Lau (The Chinese University of Hong Kong) for technical advice, and to Z.Y. Wang, B.S. Galil (National Institute of Oceanography, Israel), A. Crosnier (Museum National d’Histoire Naturelle, Paris), P. Clark (Museum of Natural History, London), F. Coman and N. Preston (CSIRO Marine and Atmospheric Research, Australia) for personal communications on P. japonicus. We also thank T.D. Tzeng (She Te University, Taiwan) for providing us the CR sequences from his study for comparison, and B.K.K. Chan (Academia Sinica, Taiwan), C.K. Wong, J.W. Xu (The Chinese University of Hong Kong) and the anonymous reviewers for constructive comments on the manuscript. The work described in this paper was fully supported by a grant from the Research Grants Council, Hong Kong Special Administrative Region (HKSAR), China (Project No. CUHK4157/01M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Chu.

Additional information

Communicated by M.S. Johnson, Crawley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoi, K.H., Chan, T.Y. & Chu, K.H. Molecular population structure of the kuruma shrimp Penaeus japonicus species complex in western Pacific. Mar Biol 150, 1345–1364 (2007). https://doi.org/10.1007/s00227-006-0426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0426-x

Keywords

Navigation