Skip to main content
Log in

Recovery of novel bacterial diversity from mangrove sediment

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Bacteria in the surface sediments of a subtropical mangrove habitat were investigated using a cultivation-independent molecular approach. Phylogenetic analysis of nearly full-length 16S rRNA genes revealed a diversity of sequences that were mostly novel. Members from the five subdivisions of the Proteobacteria were detected, and they collectively represented the majority (67%) of the clone library. Sequence types affiliated with the Gammaproteobacteria constituted the largest portion (29%) of the library, and many of them were related to free-living and symbiotic sulfur-oxidizing bacteria. The Epsilonproteobacteria were the second most abundant group (16%), including only one sequence type clustering with PCR-generated bacterial clones previously recovered from deep-sea sediments. A substantial portion (8%) of the clones grouped within the Deltaproteobacteria, a subdivision with anaerobic sulfate or metal reduction as the predominant metabolic trait of its members. In addition, minor portions were affiliated with the CytophagaFlexibacterBacteroides group (9%), Actinobacteria (6%), Chloroflexi (5%), Firmicutes (4%), Fusobacteria (1%), and the Chlamydiae/Verrucomicrobia group, Fibrobacteres/Acidobacteria group and Planctomycetes (each < 1%). These results significantly expand our knowledge of the bacterial diversity of the unique mangrove environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alongi DM (1996) The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. J Mar Res 54:123–148

    Article  CAS  Google Scholar 

  • Alongi DM, Sasekumar A, Tirendi F, Dixon P (1998) The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. J Exp Mar Biol Ecol 225:197–218

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Asami H, Aida M, Watanabe K (2005) Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Appl Environ Microbiol 71:2925–2933

    Article  CAS  Google Scholar 

  • Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483

    Article  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Gibson JA, Robertson L, Nichols PD (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediment. Appl Environ Microbiol 69:2448–2462

    Article  CAS  Google Scholar 

  • Cho JC, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440

    Article  CAS  Google Scholar 

  • Cifuentes A, Antón J, Benlloch S, Donnelly A, Herbert RA, Rodríguez-Valera F (2000) Prokaryotic diversity in Zostera noltii-colonized marine sediments. Appl Environ Microbiol 66:1715–1719

    Article  CAS  Google Scholar 

  • Curtis TP, Sloan WT, Scannel JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10491–10499

    Article  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of bacteria and Archaea. Syst Biol 50:470–478

    Article  CAS  Google Scholar 

  • Dilling W, Liesack W, Pfennig N (1995) Rhabdochromatium marinum gen. nom. rev., sp. nov., a purple sulfur bacterium from a salt marsh microbial mat. Arch Microbiol 164:125–131

    Article  CAS  Google Scholar 

  • Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etchebehere C, Errazquin MI, Dabert P, Muxi L (2002) Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiol Ecol 40:97–106

    Article  CAS  Google Scholar 

  • Gray JP, Herwig RP (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 62:4049–4059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griepenburg U, Ward-Rainey N, Mohamed S, Schlesner H, Marxsen H, Rainey FA, Stackebrandt E, Auling G (1999) Phylogenetic diversity, polyamine pattern and DNA base composition of members of the order Planctomycetales. Int J Syst Bacteriol 49:689–696

    Article  CAS  Google Scholar 

  • Hagstrom A, Pommier T, Rohwer F, Simu K, Stolte W, Svensson D, Zweifel UL (2002) Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. Appl Environ Microbiol 68:3628–3633

    Article  CAS  Google Scholar 

  • Hirayama H, Takai K, Inagaki F, Yamato Y, Suzuki M, Nealson KH, Horikoshi K (2005) Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine. Extremophiles 9:169–184

    Article  CAS  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fert Soils 33:265–278

    Article  CAS  Google Scholar 

  • Hutson RA, Thompson DE, Collins MD (1993) Genetic interrelationships of saccharolytic Clostridium botulinum types B, E, and F and related clostridia as revealed by small-subunit rRNA gene sequences. FEMS Microbiol Lett 108:103–110

    Article  CAS  Google Scholar 

  • Jackson CR, Harper JP, Willoughby D, Roden E, Churchill PF (1997) A simple, efficient method for the separation of humic substances and DNA from environmental samples. Appl Environ Microbiol 63:4993–4995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jennerjahn TC, Ittekkot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30

    Article  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A, Igarashi Y (2004) Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54:2043–2047

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Kristensen E, King GM, Banta GT, Holmer M, Jensen MH, Hansen K, Bussarawit N (1994) Sulfate reduction, acetate turnover and carbon metabolism in sediments of the Ao-Nam-Bor mangrove, Phuket, Thailand. Mar Ecol Prog Ser 109:245–255

    Article  CAS  Google Scholar 

  • Kristensen E, Andersen FØ, Holmboe N, Holmer M, Thongtham N (2000) Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquat Microb Ecol 22:199–213

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, NY, pp 115–175

    Google Scholar 

  • Li L, Kato C, Horikoshi K (1999) Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8:659–677

    Article  Google Scholar 

  • Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1997) The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–110

    Article  CAS  Google Scholar 

  • Mussmann M, Ishii K, Rabus R, Amann R (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7:405–418

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravenschlag K, Sahm K, Amann R (2001) Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol 67:387–395

    Article  CAS  Google Scholar 

  • Roest K, Heilig HG, Smidt H, de Vos WM, Stams AJ, Akkermans AD (2005) Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst Appl Microbiol 28:175–185

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shao P, Chen YQ, Zhou H, Qu LH, Ma Y, Li HY, Jiao NZ (2004) Phylogenetic diversity of Archaea in prawn farm sediment. Mar Biol 146:133–142

    Article  CAS  Google Scholar 

  • Sjoling S, Mohammed MS, Lyimo JT, Kyaruzi JJ (2005) Benthic bacterial diversity and nutrient processes in mangroves: impact of deforestation. Estuar Coast Shelf Sci 63:397–406

    Article  Google Scholar 

  • Swofford DL (1999) PAUP: phylogenetic analysis using parsimony, version 4.0. Illinois Natural History Survey, Champaign, IL

  • Tam NFY, Li SH, Lan CY, Chen GZ, Li MS, Wong YS (1995) Nutrients and heavy metal contamination of plants and sediments in Futian mangrove forest. Hydrobiologia 295:149–158

    Article  CAS  Google Scholar 

  • Tsai YL, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145:3305–3315

    Article  CAS  Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Futian-City University Mangrove Research & Development Center for their support in conducting field sampling. The work described in this paper was supported by a grant from the City University of Hong Kong (Project No. 7001690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Nan Huang.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, JB., Chen, YQ., Lan, CY. et al. Recovery of novel bacterial diversity from mangrove sediment. Mar Biol 150, 739–747 (2007). https://doi.org/10.1007/s00227-006-0377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0377-2

Keywords

Navigation