Skip to main content
Log in

Trophic ecology and the related functional morphology of the deepwater medusa Periphylla periphylla (Scyphozoa, Coronata)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Remotely operated vehicle (ROV)-based field studies on the distribution and behaviour of Periphylla periphylla Péron and Lesueur (Ann Mus Hist Nat Marseille 14:316–366, 1809), from three Norwegian fjords have been combined with on-board experiments and morphological and histological studies in order to understand the trophic ecology of this species. Field studies from one of the fjords showed that the zooplankton biomass was negatively related with P. periphylla abundance, indicating a predatory effect. The majority of zooplankton biomass tended to be distributed above the aggregation of P. periphylla, which in turn showed highest abundance at 100–200 m depth. Observation on the orientation of medusae passing the ROV when descending down in the water column at dawn and dusk, showed no consistency with the theory of diel vertical migration. Estimated metabolic demand of P. periphylla indicated a daily predation impact on the prey assemblage of 13% as an average for the fjord. In situ behavioural observations showed that the dominant tentacle posture of large medusae was straight upward, with tentacles extended to the oral–aboral body axis. The hunting mode alternates between ambush and ramming, whereby tentacle posture minimises the water turbulence that may otherwise alarm the prey. The musculature of the tentacles is well developed, with an especially strong longitudinal muscle on the oral side, facilitating fast movement of the tentacle towards the mouth. In addition, ring-, radial-, and diagonal musculatures are also present. The diagonal is probably most important for the corkscrew retraction of the tentacle, used at the moment of prey capture. Results from laboratory experiments show that different body-parts of P. periphylla vary in sensitivity for chemical and mechanical stimuli, including hydrodynamic disturbance and vibration in the surrounding water. Feeding success is facilitated by combining the vibration-sense on the tentacle tips and the marginal lappets, the touch-sense on the tentacle bases and marginal lappets, and a taste control of the captured prey at the mouthlips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adam H, Czihak G (1964) Arbeitsmethoden der makroskopischen und mikroskopischen Anatomie. Ein Laboratoriumshandbuch für Biologen, Mediziner und technische Hilfskräfte. Fischer, Stuttgart

    Google Scholar 

  • Arai MN (1991) Attraction of Aurelia and Aequorea to prey. Hydrobiologia 216/217:363–366

    Article  Google Scholar 

  • Arai MN (1997) A functional biology of Scyphozoa. Chapman & Hall, London

    Google Scholar 

  • Båmstedt U (1986) Chemical composition and energy content. In: Corner EDS, O’Hara SCM (eds) The biological chemistry of marine copepods (chapter 1). Claredon, Oxford, pp 1–58

  • Båmstedt U, Youngbluth M (2000) Norwegian marine science goes deeper. Ocean Challenge 9(3):25–30

    Google Scholar 

  • Båmstedt U, Kaartwedt S, Youngbluth M (2003) An evaluation of acoustic and video methods to estimate the abundance and vertical distribution of jellyfish. J Plankton Res 25(11):1307–1318

    Article  Google Scholar 

  • Berstad V, Båmstedt U, Martinussen MB (1995) Distribution and swimming of the jellyfishes Aurelia aurita and Cyanea capillata. In: Skojldal HR, Hopkins C, Erikstad K, Leinås HP (eds) Ecology of fjords and coastal waters. Elvesier, Amsterdam, pp 257–271

    Google Scholar 

  • Brodeur RD, Mills CE, Overland JE, Walters GE, Schumacher JD (1999) Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to the climate change. Fish Oceanogr 8:296–306

    Article  Google Scholar 

  • Costello JH (1992) Foraging mode and energetics of hydrozoan medusae. Sci Mar 56(2–3):185–191

    Google Scholar 

  • Costello JH, Colin SP (1994) Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Mar Biol 121:327–334

    Article  Google Scholar 

  • Costello JH, Colin SP (1995) Flow and feeding by swimming scyphomedusae. Mar Biol 124:399–406

    Article  Google Scholar 

  • D’Ambra I, Costello JH, Bentivegna F (2001) Flow and prey capture by the scyphomedusa Phyllorhiza punctata von Lendenfeld, 1884. Hydrobiologia 451:223–227

    Article  Google Scholar 

  • Faulstich H, Trischmann H, Mayer D (1983) Preparation of tetramethylrhodaminyl-phalloidin and uptake of the toxin into short-term cultured hepatocytes by endocytosis. Exp Cell Res 144:73–82

    Article  CAS  Google Scholar 

  • Fosså JH (1992) Mass occurrence of Periphylla periphylla (Scyphozoa, Coronatae) in a Norwegian fjord. Sarsia 77:237–251

    Article  Google Scholar 

  • Fraser JH (1968) Standardization of zooplankton sampling methods at sea. In: Zooplankton sampling, part II. UNESCO Press, Paris, pp 149–168

  • Gerritsen J, Strickler JR (1977) Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Board Can 34:73–82

    Article  Google Scholar 

  • Jarms G, Båmstedt U, Tiemann H, Martinussen MB, Fosså JH (1999) The holopelagic life cycle of the deep-sea medusa Periphylla periphylla (Scyphozoa, Coronatae). Sarsia 84:55–65

    Article  Google Scholar 

  • Jarms G, Tiemann H, Båmstedt U (2002) Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar Biol 141:647–657

    Article  Google Scholar 

  • Lamprecht J (1999) Biologische Forschung: von der Planung bis zur Publikation. Filander, Fürth

    Google Scholar 

  • Larson RJ (1979) Feeding in coronate medusae (Class Scyphozoa, Order Coronatae). Mar Behav Physiol 6:123–129

    Article  Google Scholar 

  • Larson RJ (1986) Pelagic scyphomedusae in the Southern Ocean. Biology of the Antarctic Seas XVI. Antarct Res Ser 41:59–165

    Article  Google Scholar 

  • Larson RJ (1991) Diet, prey selection and daily ration of Stomolophus meleagris, a filter-feeding scyphomedusa from the NE Gulf of Mexico. Estuarine Coast Shelf Sci 32:511–525

    Article  Google Scholar 

  • Maas O (1897) Die Medusen. 21st Report on the dredging operations of the US steamer. “Albatross” during 1891. Mem Mus Harv 23:1–92

    Google Scholar 

  • Madin LP (1988) Feeding behavior of tentaculate predators: in situ observations and a conceptual model. Bull Mar Sci 43(3):413–429

    Google Scholar 

  • Mayboroda OA (1992–1993) Presumed chemoreceptor cells in secondary tentacles of Lucernaria quadricornis (Scyphozoa: Stauromedusa). Pheromones 2–3(1–4):11–16

  • Mills CE (1981) Diversity of swimming behaviors in hydromedusae as related to feeding and utilization of space. Mar Biol 64:185–189

    Article  Google Scholar 

  • Mills CE (1995) Medusae, siphonophores and ctenophores as planktivorous predators in changing global ecosystems. ICES J Mar Sci 52:575–581

    Article  Google Scholar 

  • Parsons TR, Takahashi M (1973) Biological oceanographic processes. Pergamon, Oxford

    Google Scholar 

  • Perkins FO, Ramsey RW, Street SF (1971) The ultrastructure of fishing tentacle muscle in the jellyfish Chrysaora quinquecirrha: a comparison of contracted and relaxed states. J Ultrastruct Res 35:431–450

    Article  CAS  Google Scholar 

  • Péron F, Lesueur CA (1809) Histoire générale et particuliére de tout les animaux qui composent les famille des Méduses. Ann Mus Hist Nat Mars 14:316–366

    Google Scholar 

  • Peteya DJ (1975) The ciliary-cone sensory cell of anemones and cerianthids. Tissue Cell 7(2):243–252

    Article  CAS  Google Scholar 

  • Purcell JE, Sturdevant MV (2001) Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Mar Ecol Prog Ser 210:67–83

    Article  Google Scholar 

  • Raskoff KA (2002) Foraging, prey capture, and gut contents of the mesopelagic narcomedusa Solmissus spp. (Cnidaria Hydrozoa). Mar Biol 141:1099–1107

    Article  Google Scholar 

  • Russel FS (1970) The medusae of the British Isles. II, Pelagic Scyphozoa with a supplement to the first volume on hydromedusae. Cambridge University Press, Cambridge

    Google Scholar 

  • Sørnes TA, Aksnes DL (2004) Predation efficiency in visual and tactile zooplanktivores. Limnol Oceanogr 49(1):69–75

    Article  Google Scholar 

  • Suchman CL, Sullivan BK (1998) Vulnerability of the copepod Acartia tonsa to predation by the scyphomedusa Chrysaora quinquecirrha: effect of prey size and behaviour. Mar Biol 132:237–245

    Article  Google Scholar 

  • Suchman CL, Sullivan BK (2000) Effect of prey size on vulnerability of copepods to predation by the scyphomedusae Aurelia aurita and Cyanea sp. J Plankton Res 22:2289–2306

    Article  Google Scholar 

  • Sullivan BK, Suchman CL, Costello JH (1997) Mechanics of prey selection by ephyra of the scyphomedusa Aurelia aurita. Mar Biol 130:213–222

    Article  Google Scholar 

  • Thiel ME (1936) Scyphomedusae. In: Bronns HG (ed) Klassen und Ordnungen des Tierreichs. Zweiter Band, II. Abteilung, 2. Buch. Akademische Verlagsgesellschaft m.b.H, Leipzig, pp 1–672

    Google Scholar 

  • Thurston MH (1977) Depth distribution of Hyperia spinigera Bovallius, 1889 (Crustacea: Amphipoda) and medusae in the North Atlantic Ocean, with notes on the associations between Hyperia and coelenterates. In: Angel M (ed) A voyage of discovery. George Deacon 70th anniversary volume. Pergamon, Oxford, pp 499–536

    Google Scholar 

  • Tiemann H, Sötje I, Jarms G, Paulmann C, Epple M, Hasse B (2002) Calcium sulphate hemihydrate in statoliths of deep-sea medusae. J Chem Soc, Dalton Trans 1266–1268

  • Watson GM, Hessinger DA (1991) Chemoreceptor-mediated elongation of stereocilium bundles tunes vibration-sensitive mechanoreceptors on cnidocyte-supporting cell complexes to lower frequencies. J Cell Sci 99:307–316

    CAS  Google Scholar 

  • Youngbluth MJ, Båmstedt U (2001) Distribution, abundance, behaviour and metabolism of Periphylla periphylla, a mesopelagic coronate medusa in a Norwegian fjord. Hydrobiologia 451:321–333

    Article  Google Scholar 

Download references

Acknowledgments

We thank the crew on R.V. “Håkon Mosby” for quality working facilities. We are thankful for the support from the European Union through the TMR (Training and Mobility of Researchers) Programme (contact no. ERBFMGECT950013) and the EUROGEL-Project (contract no. EVK3-CT-2002-00074) and Norwegian Research Council project no 146994/S40 at the University of Bergen. We are grateful to R. Walter for technical assistance with electron microscopy and thankful to B.D. Johnston for the English language revision. The experiments comply with the current laws of Norway and Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilka Sötje.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sötje, I., Tiemann, H. & Båmstedt, U. Trophic ecology and the related functional morphology of the deepwater medusa Periphylla periphylla (Scyphozoa, Coronata). Mar Biol 150, 329–343 (2007). https://doi.org/10.1007/s00227-006-0369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0369-2

Keywords

Navigation