Skip to main content
Log in

Glycohistochemistry of a marine sponge, Chondrilla nucula (Porifera, Desmospongiae), with remarks on a possibly related antimicrobial defense strategy and a note on exopinacoderm function

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Based on carbohydrate histochemistry, including the use of lectins, and TEM, the study describes the distribution of terminal sugars in different structures of the demosponge Chondrilla nucula. The results of the general and specific carbohydrate histochemical approaches confirmed the presence of acidic and neutral glycoconjugates in the cells, and, with declining amounts from the ectosome to the mesohyl, in the extracellular matrix (ECM). AB-PAS staining indicated acidic complex carbohydrates particularly in the exopinacoderm, and more neutral ones in the cells and the ECM of the mesohyl. The PO-lectins applied demonstrated a general spectrum of free saccharide residues (α-d-mannose, α-/β-d-N-acetylglucosamine, α-d-N-acetylgalactosamine, α-d-galactose, β-d-galactose) in both sponge parts; α-l-fucose was only distinct in the ectosome. Sialic acids [siaα(2,3)-galactose, siaα(2,6)-N-acetylgalactosamine] were dominant in the very thin exopinacoderm, indicating O-linked high molecular weight glycoproteins. In this way a glycophysiologically ‘rigid’ outer mucus cover is developed as protection against mechanical hazards. Some of the free sugars (α-d-mannose, N-acetylglucosamine, N-acetylgalactosamine β-d-galactose, α-l-fucose) are known to prevent the adherence of different bacteria and fungi to cellular surfaces. Thus a high concentration of such sugars, may impede massive attacks of micro-inhabitants on mobile sponge cells, pinacocytes, and the exopinacoderm layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allison RT (1987) The effects of various fixatives on subsequent lectin binding to tissue sections. Histochem J 19:65–74

    Article  CAS  PubMed  Google Scholar 

  • Alroy J, Ucci AA, Pereira MEA (1988) Lectin histochemistry: an update. In: DeLellis RA (ed) Advances in immunohistochemistry (neoplasms diagnosis). Raven Press, New York, pp 93–131

    Google Scholar 

  • Austin B (2002) The bacterial flora of fish. Sci World J 2:558–572

    Article  CAS  Google Scholar 

  • Baum C, Meyer W, Stelzer R, Fleischer L-G, Siebers D (2002) Average nanorough skin surface of the pilot whale (Globicephala melas, Delphinidae): considerations on the self-cleaning abilities based on nanoroughness. Mar Biol 140:653–657

    Article  Google Scholar 

  • Bond C, Harris A (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246:271–284

    Article  CAS  PubMed  Google Scholar 

  • Boury-Esnault N (2002) Order Chondrosida Boury-Esnault & Lopés, 1985. Family Chondrillidae Gray, 1872. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kulwer/Plenum, New York, pp 291–297

    Chapter  Google Scholar 

  • Bretting H, Königsmann K (1979) Investigations on the lectin-producing cells in the sponge Axinella polypoides (Schmidt). Cell Tiss Res 201:487–497

    Article  CAS  Google Scholar 

  • Brümmer F, Calcinai B, Götz M, Leitermann F, Nickel M, Sidri M, Zucht W (2004) Overview on the sponge fauna of the Limski kanal, Croatia, Northern Adriatic Sea. Boll Mus Ist Biol Univ Genova 68:219–227

    Google Scholar 

  • Campbell BJ (1999) Biochemical and functional aspects of mucus and mucin-type glycoproteins. In: Mathiowitz E, Chickering DE, Lehr CM (eds) Bioadhesive drug delivery systems, drugs and the pharmaceutical sciences, vol 98. Marcel Dekker, New York, pp 85–130

    Google Scholar 

  • Carballo JL, Gómez P, Cruz-Barraza JA, Flores-Sánchez DM (2003) Sponges of the family Chondrillidae (Porifera: Demospongiae) from the Pacific coast of Mexico, with the description of three new species. Proc Biol Soc Wash 116:515–527

    Google Scholar 

  • Critchley IA, Douglas LJ (1987) Role of glycosides as epithelial cell receptors for Candida albicans. J Gen Microbiol 133:637–643

    CAS  PubMed  Google Scholar 

  • Danguy A, Decaestecker C, Genten F, Salmon I, Kiss R (1998) Application of lectins and neoglycoconjugates in histology and pathology. Acta Anat 161:206–218

    Article  CAS  PubMed  Google Scholar 

  • Daunter B, Forbes KL, Sanderson BM, Morrison J, Wright G (1992) Inhibition of binding of bacteria to amniochorionic membranes by amniotic fluid. Eur J Obstet Gynecol Reprod Biol 47:95–102

    Article  CAS  PubMed  Google Scholar 

  • De Vos L, Rützler K, Boury-Esnault N, Donadey C, Vacelet J (1991) Atlas de morphologie des eponges—Atlas of sponge morphology, vol 117. Smithsonian Inst Press, Washington

  • Fairchild CD, Jones IK, Glazer AN (1991) Absence of glycosylation on cyanobacterial phycobilisome linker polypeptides and rhodophytan phycoerythrins. J Bacteriol 173:2985–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    CAS  PubMed  Google Scholar 

  • Faulkner DJ, Unson MD, Bewley CA (1994) The chemistry of some sponges and their symbionts. Pure Appl Chem 66:1983–1990

    Article  CAS  Google Scholar 

  • Fernandez-Busquets X, Burger MM (2003) Circular proteoglycans from sponges: first members of the spongican family. Cell Mol Life Sci 60:88–112

    Article  CAS  PubMed  Google Scholar 

  • Gaino E, Pronzato R (1983) Étude en microscopie électronique du filament des formes étirées chez Chondrilla nucula (Porifera, Demospongiae). Ann Sci Nat Zool 5:221–234

    Google Scholar 

  • Geyer G (1973) Ultrahistochemie. Histochemische Arbeitsvorschriften für die Elektronenmikroskopie, 2nd edn. G Fischer, Stuttgart

    Google Scholar 

  • Hanstede JG, Gerrits PO (1983) The effects of embedding in water-soluble plastics on the final dimensions of liver sections. J Microsc 131:79–90

    Article  CAS  PubMed  Google Scholar 

  • Hayat MA (1993) Stains and cytochemical methods. Plenum, New York

    Google Scholar 

  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. Prog Mol Subcell Biol 37:59–88

    Article  CAS  PubMed  Google Scholar 

  • Hoiczyk E (1998) Structural and biochemical analysis of the sheath of Phormidium uncinatum. J Bacteriol 180:3923–3932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoiczyk E, Baumeister W (1997) Oscillin, an extracellular, Ca2+-binding glycoprotein essential for the gliding motility of cyanobacteria. Mol Microbiol 26:699–708

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Stöhr R (2003) Sponge-associated bacteria: a general overview and special aspects of bacteria associated with Halochondria panicea. Prog Mol Subcell Biol 37:35–57

    Article  CAS  PubMed  Google Scholar 

  • Izhar M, Nuchamowitz Y, Mirelman D (1982) Adherence of Shigella flexneri to guinea pig intestinal cells is mediated by a mucosal adhesion. Infect Immun 35:1110–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • James J, Tas J (1984) Histochemical protein staining methods (Microscopy handbooks 04). Oxford University Press, Royal Microsc Soc, Oxford

    Google Scholar 

  • Jarchow J, Fritz J, Anselmetti D, Calabro A, Hascall VC, Gerosa D, Burger MM, Fernandez-Busquets X (2000) Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges. J Struct Biol 132:95–105

    Article  CAS  PubMed  Google Scholar 

  • Keyzers RA, Davies-Coleman MT (2005) Anti-inflammatory metabolites from marine sponges. Chem Soc Rev 34:355–365

    Article  CAS  PubMed  Google Scholar 

  • Klautau M, Russo CAM, Lazoski C, Boury-Esnault N, Torpe J, Solé-Cava A (1999) Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422

    Article  PubMed  Google Scholar 

  • Lamblin G, Degroote S, Perini JM, Delmotte P, Scharfman A, Davril M, Lo-Guidice JM, Houdret N, Dumur V, Klein A, Roussel P (2001) Human airway mucin glycosylation: a combinatory of carbohydrate determinants which vary in cystic fibrosis. Glycoconj J 18:661–684

    Article  CAS  PubMed  Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado M, Cortadellas N, Trillas MI, Rützler K (2005) Endosymbiontic yeast maternally transmitted in a marine sponge. Biol Bull 209:94–106

    Article  CAS  PubMed  Google Scholar 

  • McGavin MH, Krajewska-Pietrasik D, Ryden C, Hook M (1993) Identification of a Staphylococcus aureus extracellular matrix-binding protein with broad specificity. Infect Immun 61:2479–2485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercurio M, Scalera-Liaci L, Corriero G (2001) La fauna a poriferi del bacino della strea di Porto Cesareo (Le). Biol Mar Medit 8:403–412

    Google Scholar 

  • Meyer W, Seegers U (2004) A preliminary approach to epidermal antimicrobial defense in the Delphinidae. Mar Biol 244:841–844

    Google Scholar 

  • Meyer W, Bollhorn M, Stede M (2000) Aspects of antimicrobial properties of skin secretions in the Common seal (Phoca vitulina). Dis Aquat Org 41:77–79

    Article  CAS  Google Scholar 

  • Meyer W, Neurand K, Tanyolac A (2001) General antimicrobial properties of the integument in fleece producing sheep and goats. Small Rumin Res 41:181–190

    Article  CAS  PubMed  Google Scholar 

  • Meyer W, Seegers U, Schnapper A (2003a) Free sugars as antimicrobial agents on the epidermal surface of aquatic vertebrates. 96 Jahresvers Dtsch Zool Ges (Berlin), Abstracts, 135

  • Meyer W, Seegers U, Herrmann J, Schnapper A (2003b) Further aspects of general antimicrobial properties of skin secretions of pinnipeds. Dis Aquat Org 44:177–179

    Article  Google Scholar 

  • Millonig G (1981) Advantages of a phosphate buffer for OsO4 solutions in fixation. J Appl Phys 32:1637

    Google Scholar 

  • Müller WE, Müller IM (2003) Analysis of the sponge (Porifera) gene repertoire: implications for the evolution of the metazoan body plan. Prog Mol Subcell Biol 37:1–33

    Article  PubMed  Google Scholar 

  • Müller WEG, Zahn RK, Kurelec B, Müller I (1984) A catalogue of the sponges near Rovinj. Thalassia Jugoslavica 20:13–23

    Google Scholar 

  • Novosel M, Bakran-Petricioli T, Požar-Domac A, Kružic P, Radic I (2002) The benthos of the Northern part of the Velebit channel (Adriatic Sea, Croatia). Nat Croat 11:387–409

    Google Scholar 

  • Ollert MW, Söhnchen R, Korting HC, Ollert U, Bräutigam S, Bräutigam W (1993) Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun 61:4560–4568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar Ecol Prog Ser 192:1–11

    Article  CAS  Google Scholar 

  • Pearse AGE (1968) Histochemistry. Theoretical and applied, 3rd edn, vol 1. Preparative and optical technology. Churchill Livingstone, Edinburgh

  • Pearse AGE (1980) Histochemistry. Theoretical and applied, 4th edn, vol 1. Preparative and optical technology. Churchill Livingstone, Edinburgh

  • Pearse AGE (1985) Histochemistry. Theoretical and applied, 4th edn, vol 2. Analytical technology. Churchill Livingstone, Edinburgh

  • Proksch P, Ebel R, Edrada RA, Wray V, Steube K (2003) Bioactive natural products from marine invertebrates and associated fungi. Prog Mol Subcell Biol 37:117–142

    Article  CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate of high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323

    Article  CAS  PubMed  Google Scholar 

  • Rittman BR, Mackenzie IC (1983) Effects of histological processing on lectin binding patterns in oral mucosa and skin. Histochem J 15:467–474

    Article  CAS  PubMed  Google Scholar 

  • Romero-Steiner S, Witek T, Balish E (1990) Adherence of skin bacteria to human epithelial cells. J Clin Microbiol 28:27–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rützler K (1965) Systematik und Ökologie der Poriferen aus Littoral-schattengebieten der Nordadria. Z Morph Ökol Tiere 55:1–82

    Article  Google Scholar 

  • Schauer R (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology 107:49–64

    Article  CAS  PubMed  Google Scholar 

  • Schmitz FJ, McDonald FJ (1974) Isolation and identification of cerebrosides from the marine sponge Chondrilla nucula. J Lipid Res 15:158–164

    CAS  PubMed  Google Scholar 

  • Sciscioli M, Feri D, Liquori GE, Lepore E, Santarelli G (2000) Lectin histochemistry and ultrastructure of microgranular cells in Cinachyra tarentina (Porifera, Demospongiae). Acta Histochem 102:219–230

    Article  CAS  PubMed  Google Scholar 

  • Sharon N, Eshdat Y, Silverblatt FJ, Ofek I (1981) Bacterial adherence to cell surface sugars. CIBA Found Symp 80:119–141

    CAS  PubMed  Google Scholar 

  • Sidri M (2004) Chondrilla nucula (Porifera, Demospongie): an example of successful plasticity. Ecological and morphological aspects. Dissertation Thesis, University of Stuttgart, Germany, 226 pp

  • Sionov E, Roth D, Sandovsky-Losica H, Kashman Y, Rudi A, Chill L, Berdicevsky I, Segal E (2005) Antifungal effect and possible mode of activity of a compound from the marine sponge Dysidea herbacea. J Infect 50:453–460

    Article  PubMed  Google Scholar 

  • Sobel JD, Myers PG, Kaye D, Levison ME (1981) Adherence of Candida albicans to human vaginal and buccal epithelial cells. J infect Dis 143:1, 76–82

    Article  Google Scholar 

  • Spicer SS, Schulte BA (1992) Diversity of cell glycoconjugates shown histochemically: a perspective. J Histochem Cytochem 40:1–38

    Article  CAS  PubMed  Google Scholar 

  • Stempak JG, Ward RT (1964) An improved staining method for electron microscopy. J Cell Biol 22:697–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usher KM, Toze S, Fromont J, Kuo J, Sutton DC (2004) A new species of cyanobacterial symbiont from the marine sponge Chondrilla nucula. Symbiosis 36:183–192

    CAS  Google Scholar 

Download references

Acknowledgements

The skillfull technical assistance of M. Gähle and K. Rohn, and the help of Dr. A. Schnapper is gratefully acknowledged. Part of this work (MS, FB) was supported by the Federal Ministry of Education and Research, the University of Stuttgart and the Ministry of Science, Research and Arts of the State of Baden-Württemberg through the excellence center BIOTECmarin (03F0345D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Meyer.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, W., Sidri, M. & Brümmer, F. Glycohistochemistry of a marine sponge, Chondrilla nucula (Porifera, Desmospongiae), with remarks on a possibly related antimicrobial defense strategy and a note on exopinacoderm function. Mar Biol 150, 313–319 (2006). https://doi.org/10.1007/s00227-006-0353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0353-x

Keywords

Navigation