Skip to main content
Log in

Genetic divergence between two morphologically similar varieties of the kuruma shrimp Penaeus japonicus

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The kuruma shrimp Penaeus japonicus is widely distributed throughout the Indo-West Pacific. Two morphologically similar varieties, I and II, are recognized from the South China Sea. The two varieties are characterized by different color banding patterns on the carapace, but there are no distinct differences in morphometric traits between them based on measurement of 13 characters. Sequence data and restriction profiles of the mitochondrial genes reveal that these two varieties represent distinct clades, with sequence divergences of about 1% (473 bp) in 16S rRNA, 6–7% (504 bp) in cytochrome oxidase I, and 16–19% (470 bp) in the control region. Analysis of amplified fragment length polymorphism confirms that the two varieties are genetically distinct. We also investigated the geographical distribution of the two varieties in the western Pacific by analyzing specimens collected from Japan and Singapore. Shrimps from Japan and Singapore have been found to belong to varieties I and II, respectively, suggesting that the two varieties have different geographical distribution. Phylogenetic study reveals that the two varieties are more closely related to each other than to the other phylogenetically related Penaeus species. Results from this study suggest the occurrence of two cryptic species in the kuruma shrimp P. japonicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ (2000) Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. Proc Natl Acad Sci U S A 97:4106−4111

    Google Scholar 

  • Aubert H, Lightner DV (2000) Identification of genetic populations of the Pacific blue shrimp Penaeus stylirostris of the Gulf of California, Mexico. Mar Biol 137:875−885

    Article  CAS  Google Scholar 

  • Avise JC, Ball RM Jr (1990) Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surv Evol Biol 7:45−67

    Google Scholar 

  • Avsar D (1994) A stock differentiation study of the sprat (Sprattus sprattus phalericus Risso) off the southern coast of the Black Sea. Fish Res 19:363−378

    Google Scholar 

  • Benzie JAH (1998) Penaeid genetics and biotechnology. Aquaculture 164:23−47

    Google Scholar 

  • Benzie JAH, Ballment E, Forbes AT, Demetriades NT, Sugama K, Haryanti Moria S (2002) Mitochondrial DNA variation in Indo-Pacific populations of the giant tiger prawn, Penaeus monodon. Mol Ecol 11:2553–2569

    Google Scholar 

  • Birky CW Jr, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103:513−527

    PubMed  Google Scholar 

  • Bouchon D, Souty-Grosset C, Raimond R (1994) Mitochondrial DNA variation and markers of species identity in two penaeid shrimp species: Penaeus monodon Fabricus and P. japonicus Bate. Aquaculture 127:131−144

    Google Scholar 

  • Bruce AJ (1978) The evolution and zoogeography of shallow-water tropical shrimps. Informative Series, Department of Scientific and Industrial Research, New Zealand 137:337−355

  • Camin JH, Sokal RR (1965) A method for deducing branching sequences in phylogeny. Evolution 19:311−326

    Google Scholar 

  • Chan TY (1998) Shrimps and prawns. In: Carpenter KE, Niem VH (eds) The living marine resources of the western central Pacific, vol 2. Food and Agriculture Organization of the United Nations, Rome, pp 851−917

  • Chassard-Bouchaud C (1965) L’adaptation chromatiwue chez les Natantia (crustacés decapods). Cah Biol Mar 6:469−576

    Google Scholar 

  • Chu KH, Li CP, Tam YK, Lavery S (2003) Application of mitochondrial control region in population genetic studies of the shrimp Penaeus. Mol Ecol Notes 3:120−122

    Google Scholar 

  • Cracraft J (1983) Species concepts and speciation analysis. Current Ornithol 1:159−187

    Google Scholar 

  • Cracraft J (1987) Species concepts and the ontology of evolution. Biol Philos 2:329−346

    Google Scholar 

  • Duda TF Jr, Palumbi SR (1999) Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations. Mar Biol 134:705−710

    Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Constructing a significant test for incongruence. Syst Biol 44:570−572

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368−376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (2002) Phylogeny inference package (PHYLIP) v3.6a3. University of Washington, Seattle

  • Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324−337

    Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer, Sunderland, MA

  • Gusmão J, Lazoski C, Solé-Cava AM (2000) A new species of Penaeus (Crustacea: Penaeidae) revealed by allozyme and cytochrome oxidase I analysis. Mar Biol 137:435−446

    Google Scholar 

  • Hetzel DJS, Crocos PJ, Davis GP, Moore SS, Preston NC (2000) Response to selection and heritability for growth in the kuruma prawn, Penaeus japonicus. Aquaculture 181:215−223

    Google Scholar 

  • Hualkasin W, Sirimontaporn P, Chotigeat W, Querci J, Phongdara A (2003) Molecular phylogenetic analysis of white prawns species and the existence of two clades in Penaeus merguiensis. J Exp Mar Biol Ecol 296:1–11

    Google Scholar 

  • Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589

    CAS  PubMed  Google Scholar 

  • Jerry DR, Preston NP, Crocos PJ, Keys S, Meadows JRS, Li Y (2004) Parentage determination of kuruma shrimp Penaeus (Marsupenaeus) japonicus using microsatellite markers (Bate). Aquaculture 235: 237–247

    Google Scholar 

  • Keiper FJ, McConchie R (2000) An analysis of genetic variation in natural populations of Sticherus flabellatus [R. Br. (St John)] using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:571−581

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111−120

    CAS  PubMed  Google Scholar 

  • Klinbunga S, Penman DJ, McAdrew BJ, Tassanakajon A (1999) Mitochondrial DNA diversity in three populations of the giant tiger shrimp Penaeus monodon. Mar Biotechnol 1:113−121

    Google Scholar 

  • Knowlton N (1986) Cryptic and sibling species among the decapod Crustacea. J Crustac Biol 6:356−363

    Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189−216

    Google Scholar 

  • Knowlton N, Keller BD (1983) A new, sibling species of snapping shrimp associated with the Caribbean sea anemone Bartholomea annulata. Bull Mar Sci 33:353−362

    Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B Biol Sci 265:2257−2263

    Article  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetic analysis software. Bioinformatics 17:1244−1245

    Article  CAS  PubMed  Google Scholar 

  • Lavery S, Chan TY, Tam YK, Chu KH (2004) Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s. l. derived from mitochondrial DNA. Mol Phylogenet Evol 31:39–49

    Google Scholar 

  • Li Y, Byrne K, Miggiano E, Whan V, Moore S, Keys S, Crocos P, Preston N, Lehnert S (2003) Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture 219:143–156

    Article  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. New York, Columbia University Press

  • McElroy D, Moran P, Bermingham E, Kornfield I (1991) REAP: the restriction enzyme analysis package, ver 4.0. Department of Zoology, University of Maine, Orono

  • McMillen-Jackson AL, Bert TM (2004) Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum. J Crustac Biol 24:101−109

    Google Scholar 

  • Merril CR, Switzer RC, Keuren ML van (1979) Trace polypeptides in cellular extracts and human body fluid detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc Natl Acad Sci U S A 76:4335−4339

    Google Scholar 

  • Mink DG, Sites JW Jr (1996) Species limits, phylogenetic relationships, and origins of viviparity in the Scalaris complex of the lizard genus Sceloporus (Phrynosomatidae). Herpetologica 52:551−557

    Google Scholar 

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225−233

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc Natl Acad Sci U S A 76:5269−5273

    Google Scholar 

  • Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145−163

    CAS  PubMed  Google Scholar 

  • Palumbi SR, Benzie J (1991) Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Mol Mar Biol Biotechnol 1:27−34

    Google Scholar 

  • Pérez Farfante I (1969) Western Atlantic shrimp of genus Penaeus. Fish Bull U S 67:461−591

    Google Scholar 

  • Pérez Fartante I, Kensley B (1997) Penaeoid and sergestoid shrimps and prawns of the world. Keys and diagnoses for the families and genera. Mém Mus Natl Hist Nat Paris 175:1−233

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817−818

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280−1283

    Google Scholar 

  • Rodríguez F, Oliver JL, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    PubMed  Google Scholar 

  • Roff DA, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphism: χ2 and the problems of small samples. Mol Biol Evol 6:539−545

    CAS  PubMed  Google Scholar 

  • Rosenberry B (2001) World shrimp farming 2001. Shrimp News International, San Diego

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945−967

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406−425

    CAS  PubMed  Google Scholar 

  • Salini JP, Moore LE (1985) Taxonomy of the greentail prawn, Metapenaeus bennettae, and the western school prawn, M. dalli. In: Rothlisberg PC, Hill BJ, Staples DJ (eds) Second Australian national prawn seminar. Cleveland, pp 95−103

  • Salmon M, Ferris SD, Johnston D, Hyatt G, Whitt GS (1979) Behavioral and biochemical evidence for species distinctiveness in the fiddler crabs. Uca speciosa and U. spinicarpa. Evolution 33:182−191

    Google Scholar 

  • Sbordoni V, DeMatthaeis E, Cobolli Sbordoni M, La Rosa G, Mattoccia M (1986) Bottleneck effects and the depression of genetic variability in hatchery stocks of Penaeus japonicus (Crustacea, Decapoda). Aquaculture 57:239−251

    Google Scholar 

  • Schneider S, Roessli O, Excoffier L (2000) Arlequin ver 2.000: a software for genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

  • Seki S, Agresti JJ, Gall GAE, Taniguchi N, Bernie M (1999) AFLP analysis of genetic diversity in three populations of ayu Plecoglossus altivelis. Fish Sci 65:888−892

    Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:652–701

    Google Scholar 

  • Sturmbauer C, Levinton J, Christy J (1996) Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. Proc Natl Acad Sci U S A 93:10855–10857

    Google Scholar 

  • Sugaya T, Ikeda M, Mori H, Taniguchi N (2002) Inheritance mode of microsatellite DNA markers and their use for kinship estimation in kuruma prawn Penaeus japonicus. Fish Sci 68:299−305

    Google Scholar 

  • Supungul P, Sootanan P, Klinbunga S, Kamonrat W, Jarayabhand P, Tassanakajon A (2000) Microsatellite polymorphism and the population structure of the black tiger shrimp (Penaeus monodon) in Thailand. Mar Biotechnol 2:339–347

    Google Scholar 

  • Swofford DL (2000) PAUP*: phylogenetic analysis using parsimony (*and other methods), ver 4. Sinauer, Sunderland, MA

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Proc Natl Acad Sci U S A 22:4673–4680

    Google Scholar 

  • Tirmizi NW (1971) Marsupenaeus, a new subgenus of Penaeus Fabricius, 1798 (Decapoda, Natantia). Pak J Zool 3:193–194

    Google Scholar 

  • Tong JG, Chan TY, Chu KH (2000) A preliminary phylogenetic analysis of Metapenaeopsis (Decapoda: Penaeidae) based on mitochondrial DNA sequences of selected species form the Indo-West Pacific. J Crustac Biol 20:543–551

    Google Scholar 

  • Tzeng TD, Yeh SY (1999) Analysis of the morphometric characters of the kuruma shrimp (Penaeus japonicus) in the East China Sea and the Taiwan Strait. J Fish Soc Taiwan 26:203−212

    Google Scholar 

  • Vos P, Hogers R, Bleeker M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407−4414

    CAS  PubMed  Google Scholar 

  • Wang ZY, Jayasankar P, Khoo SK (2000) AFLP fingerprinting reveals genetic variability in common carp stocks from Indonesia. Asian Fish Sci 13:139−147

    Google Scholar 

  • Wang ZY, Tsoi KH, Chu KH (2004) Application of AFLP technology in genetic and phylogenetic analysis of penaeid shrimp. Biochem Syst Ecol 32:399−407

    Google Scholar 

  • Yu HP, Chan TY (1986) The illustrated penaeoid prawns of Taiwan. Southern Materials Center, Taiwan

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall, London

  • Tzeng TD, Yeh SY (2002) Multivariate allometric comparisons for kuruma shrimp (Penaeus japonicus) off Taiwan. Fish Res 59:279–288

    Google Scholar 

Download references

Acknowledgements

Sincere thanks are extended to P.K.L. Ng (National University of Singapore), K. Tanaka (Kyorin University, Japan), Y.H. Yung (The Chinese University of Hong Kong), J. Wong and P.H. Wong (Princess Margaret Hospital, Hong Kong) for collecting specimens. We are indebted to T.Y. Chan (National Taiwan Ocean University) for examination of the specimens and discussion on this project. We also thank J. Tong (Institute of Hydrobiology, Chinese Academy of Sciences), Y.K. Tam, C.P. Li, and W. Lau (The Chinese University of Hong Kong) for technical assistance, and C.K. Wong (The Chinese University of Hong Kong) and an anonymous reviewer for constructive comments on the manuscript. The work described in this article was fully supported by a grant from the Research Grants Council, Hong Kong Special Administrative Region (HKSAR), China (Project no. CUHK4157/01 M). The experiments complied with the current laws of HKSAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Chu.

Additional information

Communicated by M.S. Johnson, Crawley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoi, K.H., Wang, Z.Y. & Chu, K.H. Genetic divergence between two morphologically similar varieties of the kuruma shrimp Penaeus japonicus. Marine Biology 147, 367–379 (2005). https://doi.org/10.1007/s00227-005-1585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-1585-x

Keywords

Navigation