Skip to main content
Log in

A morphological approach for relating decapod crustacean cephalothorax shape with distribution in the water column

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Cephalothorax profiles for individuals of 18 decapod crustacean species were obtained from pictures of specimens captured using various experimental bottom trawls in the Mediterranean basin, at depths ranging from 200 to 4000 m in 2000 and 2002. Profiles were compared using the shape (outline) of the entire cephalothorax (including and excluding the rostrum). Principal component analysis (PCA) of the profiles, rostrum included, yielded two large species groupings related to rostrum size, species having a long rostrum being clustered on the positive portion of the first axis and species having a short rostrum being clustered on the negative portion of this same axis (the F1 axis explained 72.17% of the total variance). The PCA separated pelagic and endobenthic animals (with short rostrums) from nektobenthic animals (with long rostrums). Only the two deepest-dwelling species (dwelling at depths below 2000 m) were distanced from their respective groups. The pelagic shrimp Acanthephyra pelagica was clearly grouped with the nektobenthic species despite being reported to have a pelagic habitat. The nektobenthic deep-sea species Nematocarcinus exilis has a relatively medium-size rostrum and was placed among the pelagic–endobenthic species. The endobenthic and pelagic groups remained stable even when rostral morphometrics were excluded from the PCA analysis. The hypothesis that predation and diet are the fundamental determining factors for all habitats throughout most of the lifetimes of individuals and hence that species will evolve specialised phenotypes to adapt to local environmental conditions is considered in the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 a
Fig. 3
Fig. 4
Fig. 5 a

Similar content being viewed by others

References

  • Agrawal A (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    Article  CAS  PubMed  Google Scholar 

  • Arnqvist G, Johansson F (1998) Ontogenetic reaction norms of predator-induced defensive morphology in dragonfly larvae. Ecology 79:1847–1858

    Google Scholar 

  • Burukovsky RN (1972) On the function of the rostrum in shrimps. Tr Atl Nauchno-issled Inst Rybn Khoz Okeanogr 42:176–179

    Google Scholar 

  • Carrasson M, Cartes JE (2002) Trophic relationship in a Mediterranean deep-sea fish community: partition of food resources dietary overlap and connection within Benthic Boundary Layer. Mar Ecol Prog Ser 241:41–55

    Google Scholar 

  • Carrasson M, Stefanescu C, Cartes JE (1992) Diets and bathymetric distributions of two bathyal sharks of the Catalan deep-sea (western Mediterranean). Mar Ecol Prog Ser 82:21–30

    Google Scholar 

  • Cartes JE (1998) Feeding strategies and partition of food resources in deep-water decapod crustaceans (400–2300 m). J Mar Biol Assoc UK 78:509–524

    Google Scholar 

  • Cartes JE, Sardà F (1993) Zonation of deep-sea decapod fauna in the Catalan Sea (western Mediterranean). Mar Ecol Prog Ser 94:27–34

    Google Scholar 

  • Cartes JE, Sardà F, Company JB, Lleonart J (1993) Day–night migrations by deep-sea decapod crustaceans in experimental samplings in the western Mediterranean Sea. J Exp Mar Biol Ecol 171:63–73

    Article  Google Scholar 

  • Cartes JE, Sorbe JC, Sardà F (1994) Spatial distribution of deep-sea decapods and euphausiids near the bottom in the north-western Mediterranean. J Exp Mar Biol Ecol 179:131–144

    Article  Google Scholar 

  • Childress JJ, Nygaard MH (1974) The chemical composition and relative buoyancy of midwater crustaceans as a function of depth of occurrence off Southern California. Mar Biol 27:225–238

    Article  CAS  Google Scholar 

  • Childress JJ, Taylor SM, Caillet GM, Price MH (1980) Patterns of growth energy utilisation and reproduction in some meso- and bathypelagic fishes off Southern California. Mar Biol 61:27–40

    Article  Google Scholar 

  • Company JB, Sardà F (2000) Growth parameters of deep-water decapod crustaceans in the northwestern Mediterranean Sea: a comparative approach. Mar Biol 136:79–90

    Article  Google Scholar 

  • Company JB, Maiorano P, Tselepides A, politou C.-y, plaity W, Rotllant G, Sardà F (2004) Deep-sea decapod crustaceans in the western and central Mediterranean Sea: preliminary aspects of species distribution, biomass and population structure. Sci Mar 68(Suppl 3):73–86

    Google Scholar 

  • Crosnier A, Forest J (1973) Les crevettes profondes de l’Atlantique oriental tropical. Faune trop ORSTOM 19:1–409

    Google Scholar 

  • Gage JD, Tyler PA (1990) Deep-sea biology. A natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge

  • Hargreaves PM (1984) The distribution of Decapoda (Crustacea) in the open ocean and near-bottom over an adjacent slope in the Northeast Atlantic Ocean during autumn 1979. J Mar Biol Assoc UK 64:829–857

    Google Scholar 

  • Hargreaves PM (1999) The vertical distribution of micronektonic decapod and mysid crustaceans across the Goban Spur of the Porcupine Seabight. Sarsia 84:1–18

    Google Scholar 

  • Harvell CD (1990) The ecology and evolution of inducible defences. Q Rev Biol 27:379–385

    Google Scholar 

  • Heegaard P (1967) On behaviour, sex-ratio and growth of Solenocera membranacea (Risso, 1816) (Decapoda Penaeidae). Crustaceana 13:227–237

    Google Scholar 

  • Hertel H (1966) Structure, form and movement. Reinhold, New York

  • Kassam DD, Sato T, Yamaoka K (2002) Landmark-based morphometric analysis of the body shape of two sympatric species Ctenopharynx pictus and Otopharync sp. “heterodon nankhumba” (Teleostei: Cichlidae) from Lake Malawi. Ichthyol Res 49:340–345

    Article  Google Scholar 

  • Kingsolver JG, Pfenning DW, Servedio M (2002) Migration, local adaptation and the evolution of plasticity. Trends Ecol Evol 17:540–541

    Article  Google Scholar 

  • Koukouras A (2000) The pelagic shrimps (Decapoda Natantia) of the Aegean Sea with an account of the Mediterranean species. Crustaceana 73:801–814

    Article  Google Scholar 

  • Koukouras A, Doulgeraki S, Kitsos MS (2000) Notes on the vertical distribution of pelagic shrimps (Decapoda Natantia) in the Aegean Sea. Crustaceana 73:979–993

    Article  Google Scholar 

  • Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comp Graph Image Process 18:236–258

    Article  Google Scholar 

  • Lagardère JP (1977) Recherches sur la distribution verticale et sur l’alimentation des crustaces decapodes benthiques de la Pente Continentale du Golfe de Gascogne. Analyse des groupements carcinologiques. Bull Cent Etud Rech Sci Biarritz 11:367–440

    Google Scholar 

  • Lestrel PE (1997) Fourier descriptors and their applications in biology. Cambridge University Press, Cambridge

  • Macpherson E (1981) Resource partitioning in a Mediterranean demersal fish community. Mar Ecol Prog Ser 4:183–193

    Google Scholar 

  • Macquart-Moulin C, Patriti G (1996) Accumulation of migratory micronekton crustaceans over the upper slope and submarine canyons of the north-western Mediterranean. Deep-Sea Res I 43:579–601

    Google Scholar 

  • Madurell T (2003) Feeding strategies and trophodynamic requirements of deep-sea demersal fish in the eastern Mediterranean. PhD thesis, Universitat Illes Balears

  • Mauchline J (1972) The biology of bathypelagic organisms, especially Crustacea. Deep-Sea Res 19:753–780

  • Mauchline J, Gordon JDM (1985) Trophic diversity in deep-sea fish. JFish Biol 26:527–538

    Google Scholar 

  • Rohlf FJ (1990) Fitting curves to outlines. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the morphometric workshop. Univ Mich Mus Zool Spec Publ 2:167–177

    Google Scholar 

  • Rohlf FJ (2001) TpsDig, ver 1, 31. Dept of Ecology and Evolution, State University of New York, Stony Brook

  • Sardá F, Demestre M (1987) Estudio bioecológico de la gamba, Aristeus antennatus, Risso, 1816, en el mar Catalán. Investig Pesq 51[Suppl. 1]:213–232

  • Sardà F, Demestre M (1989) Shortening of the rostrum and rostral variability in Aristeus antennatus (Risso, 1816). J Crustac Biol 9:570–577

    Google Scholar 

  • Sardà F, Cartes JE, Company JB, Albiol A (1998) A modified commercial trawl used to sample deep-sea megabenthos. Fish Sci (Tokyo) 64:492–493

    Google Scholar 

  • Sardà F, D’Onghia G, Politou Ch-Y, Company JB, Maiorano P, Kapiris K (2004) Deep-sea distribution, biological and ecological aspects of Aristeus antennatus (Risso, 1816) in the western and central Mediterranean Sea. Sci Mar 68 (Suppl 3):117–127

    Google Scholar 

  • Sardou J, Etienne M, Andersen V (1996) Seasonal abundance and vertical distributions of macroplankton and micronekton in the northwestern Mediterranean Sea. Oceanol Acta 19:645–656

    Google Scholar 

  • Sartor P (1993) Alimentazione e reti trophiche di pesci demersali di platea e scarpata continentale nel Mar Tyrreno settentrionale. PhD thesis, Università di Pisa, Pisa

  • Sartor P, De Ranieri S (1996) Food and feeding habits of Lepidorhombus boscii (Pisces Scophtalmidae) in the southern Tuscan Archipelago, Thyrrenian Sea. Vie Milieu 46:57–64

    Google Scholar 

  • Schmid MS, Senn DG (2002) Seahorses—Masters of adaptation. Vie Milieu 52:201–207

    Google Scholar 

  • Senn DG (1997) Durch Wasser, Wind and Wellen. Eine Naturgeschichte der ozeanischen Wirbeltiere. R+R Verlag, Aarau

  • Slice DE (1998) Software for morphometric research, revision 01-30-98-Beta. Department of Ecology and Evolution, State University of New York, Stony Brook

  • Stefanescu C, Cartes JE (1992) Benthopelagic habits of adult specimens of Lampanyctus crocodilos (Risso, 1810) (Osteichthyes, Myctophidae) on the western Mediterranean deep slope. Sci Mar 56:69–74

    Google Scholar 

  • Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH (1995) Adaptative phenotypic plasticity: consensus and controversy. Trends Ecol Evol 10:212–218

    Article  Google Scholar 

Download references

Acknowledgements

The individuals used in this study were sampled during the “DESEAS” oceanographic cruise (EC study contract 2000/39, 2001), with financial support provided by the Directorate for Fisheries of the European Commission. The authors also wish to thank Dr. J. Dantart, Dr. A. Bozzano and J.M. Anguita for their assistance in the photograph processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sardà.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sardà, F., Company, J.B. & Costa, C. A morphological approach for relating decapod crustacean cephalothorax shape with distribution in the water column. Marine Biology 147, 611–618 (2005). https://doi.org/10.1007/s00227-005-1576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-1576-y

Keywords

Navigation