Marine Biology

, Volume 149, Issue 2, pp 313–325 | Cite as

Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.)

  • Georgios TsounisEmail author
  • Sergio Rossi
  • Jürgen Laudien
  • Lorenzo Bramanti
  • Neus Fernández
  • Josep-Maria Gili
  • Wolf Arntz
Research Article


Gorgonians are passive suspension feeders, contributing significantly to the energy flow of littoral ecosystems. More than in active suspension feeders (such as bivalves, ascidians and sponges) their prey capture is affected by spatial and temporal prey distribution and water movement. Corallium rubrum is a characteristic gorgonian of Mediterranean sublittoral hard bottom communities. This study found a high variability in the annual cycle of prey capture rate, prey size and ingested biomass, compared to other Mediterranean gorgonians. Detrital particulate organic matter (POM) was found throughout the year in the polyp guts and constituted the main proportion of the diet (25–44%). Crustacean fragments and copepods (14–46%) accounted for the second major proportion, while invertebrate eggs (9–15%) and phytoplankton (8–11%) constituted the smallest part of the diet. To verify the importance of detrital POM in the energy input of this precious octocoral species, in situ experiments were carried out during the winter–spring period. The results confirm the importance of detrital POM as the main source of food for C. rubrum [0.13±0.04 μg C polyp−1 h−1 (mean±SD)]. This study also compares the prey capture rates of two colony size classes and two depth strata: Within the same patch, small colonies (<6 cm height) captured significantly more prey per polyp (0.038±0.09 prey polyp−1 h−1) than larger colonies (>10 cm high) (0.026±0.097 prey polyp−1 h−1) and showed a higher proportion of polyps containing prey (17% compared to 10%). Comparing colonies of similar size (<6 cm height) revealed that the colonies situated at 40 m depth captured significantly more prey (0.038±0.09 prey polyp−1 h−1) than the ones at 20 m (0.025±0.11 prey polyp−1 h−1). One pulse of copepods was recorded that constituted 16% of all captured prey during the 15-month period studied in one of the sampled populations. The data suggest that the variability of hydrodynamic processes may have a higher influence on the feeding rate than seasonal changes in the seston composition. The carbon ingestion combined with data on the density of the exploited population results in 0.4–9.6 mg C m−2 day−1. The grazing impact of current, heavily exploited and small-sized populations is comparable to that of larger Mediterranean gorgonians, suggesting that unexploited red coral populations may have a high impact compared with other passive suspension feeders.


Prey Item Particulate Organic Matter Capture Rate Prey Size Prey Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to M. Ribes and R. Coma for helpful comments on the design of the in situ experiments. Many thanks to C. Orejas, S. Thatje and three anonymous reviewers for their critical comments that improved the final draft. Thanks to M. Aranguren, J. Metzner and P. Claver for their help with sample processing. A. Juliá helped to improve the equipment for the experiments and J.M. Llenas provided valuable support in the field. We gratefully acknowledge financial support to G.T. by a PhD scholarship from the University of Bremen, Germany. This study was funded through Eu-Funds by the Department of Fisheries and Aquaculture of the Government of Catalonia (Spain), PCC:30103.


  1. Arntz WE, Gili JM, Reise K (1999) Unjustifiably ignored: reflections on the role of benthos in marine ecosystems. In: Gray JS et al (eds) Biochemical cycling and sediment ecology. Kluwer, Netherlands, pp 105–124CrossRefGoogle Scholar
  2. Barangé M, Gili JM (1988) Feeding cycles and prey capture in Eudendrium racemosum (Cavolini, 1785). J Exp Mar Biol Ecol 115:281–293CrossRefGoogle Scholar
  3. Beers JR (1966) Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol Oceanogr 11:520–528CrossRefGoogle Scholar
  4. Biswas AK, Biswas MR (1979) Handbook of environmental data and ecological parameters, vol 6. Environmental sciences and applications. Pergamon, OxfordGoogle Scholar
  5. Calbet A, Garrido S, Saiz E, Alcaraz M, Duarte C (2003) Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. J Plant Res 23:319–331Google Scholar
  6. Carpine C, Grasshoff M (1975) Les gorgonaires de la Mediterranée. Bull Inst Oceanogr Monaco 71:1–140Google Scholar
  7. Cebrián J, Duarte CM, Pascual J (1996) Marine climate in the Costa Brava (northwestern Mediterranean) littoral. Publ Espec Inst Esp Ocenogr 22:9–21Google Scholar
  8. Chintiroglou H, Dounas-Koukouras C (1989) The presence of Corallium rubrum (Linnaeus, 1758) in the eastern Mediterranean Sea. Mitt Zoologischem Mus Berl 65:145–149CrossRefGoogle Scholar
  9. Clarke A (1988) Seasonality in the Antarctic marine environment. Comp Biochem Physiol B 90:461–473CrossRefGoogle Scholar
  10. Cloern JE (1982) Does the benthos control phytoplankton biomass in south San Francisco Bay? Mar Ecol Prog Ser 9:191–202CrossRefGoogle Scholar
  11. Coma R, Gili JM, Zabala M, Riera T (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar Ecol Prog Ser 115:157–270CrossRefGoogle Scholar
  12. Coma R, Ribes M, Gili JM, Zabala M (2000) Seasonality in coastal ecosystems. Trends Ecol Evol 15:448–453CrossRefGoogle Scholar
  13. Coma R, Ribes M, Gili JM, Hughes RN (2001) The ultimate opportunists: consumers of seston. Mar Ecol Biol Ser 219:305–308CrossRefGoogle Scholar
  14. Cicogna F, Bavestrello G, Cattaneo-Vietti R (1999) Red coral and other Mediterranean octocorals, biology and protection. In: Cicogna F, Cattaneo-Vietti R (eds) Red coral in the Mediterranean Sea: art, history and science. Ministerio delle Risorse Agricole, Alimentari e Forestali, RomeGoogle Scholar
  15. Dai CF, Lin MC (1993) The effects of flow on feeding of three gorgonians from southern Taiwan. J Exp Mar Biol Ecol 173:57–69CrossRefGoogle Scholar
  16. Fabricius KE, Genin A, Benayahu Y (1995) Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnol Oceanogr 40:1290–1301CrossRefGoogle Scholar
  17. Fabricius K (1998) In situ depletion of phytoplankton by an azooxanthellate soft coral. Limnol Oceanogr 43:354–356CrossRefGoogle Scholar
  18. Fréchette M, Bourget E (1985) Energy flow between the pelagic and benthic zones: factors controlling particulate organic matter available to an intertidal mussel bed. Can J Fish Aquat Sci 42:1158–1165CrossRefGoogle Scholar
  19. Fréchette M, Butman CA, Geyer WR (1989) The importance of boundary-layer flow in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol Oceanogr 34:19–36CrossRefGoogle Scholar
  20. García-Rodríguez M, Massò C (1986) Estudio biométrico de poblaciones de coral rojo (Corallium rubrum L.) del litoral de Gerona (NE de España). Bol Inst Esp Oceanogr 3:61–64Google Scholar
  21. Garrabou J (1999) Life-history traits of Alcyonium acaule and Parazoanthus axinellae (Cnidaria, Anthozoa), with emphasis on growth. Mar Ecol Progr Ser 178: 193–204CrossRefGoogle Scholar
  22. Gili JM, Ros J (1985) Study and cartography of the benthic communities of the Medas Islands (NE Spain). PSZNI: Mar Ecol 6:219–238CrossRefGoogle Scholar
  23. Gili JM, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Tends Ecol Evol 13:316–321CrossRefGoogle Scholar
  24. Graf G, Schulz R, Peinert R, Meyer-Reil LA (1983) Benthic response to sedimentation events during autumn to spring at a shallow-water station in the western Kiel Bight. I. Analysis of production on a community level. Mar Biol 77:235–246CrossRefGoogle Scholar
  25. Grémare A, Amouroux JM, Charles F, Dinet A, Riaux-Gobin C, Baudart J, Medernach L, Bodiou JY, Vétion G, Colomines JC, Albert P (1997) Temporal changes in the biochemical composition and nutritional value of the particulate organic matter available to surface deposit-feeders: a two year study. Mar Ecol Prog Ser 150:195–206CrossRefGoogle Scholar
  26. Hall DJ, Cooper WE, Werner EE (1970) An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol Oceanogr 15:838–928Google Scholar
  27. Harland AD, Davies PS, Fixter LM (1992) Lipid content of some Caribbean corals in relation to depth and light. Mar Biol 113:357–361CrossRefGoogle Scholar
  28. Kim K, Lasker HR (1997) Flow-mediated resource competition in the suspension feeding gorgonian Plexaura homomalla (Esper). J Exp Mar Biol Ecol 215:49–64CrossRefGoogle Scholar
  29. Kimmerer WJ, Gartside E, Orsi JJ (1994) Predation by an introduced clam as the likely cause of substantial declines in zooplankton of San Francisco Bay. Mar Ecol Prog Ser 113:81–93CrossRefGoogle Scholar
  30. LaBarbera M (1984) Feeding currents and particle capture mechanisms in suspension feeding animals. Am Zool 24:71–84CrossRefGoogle Scholar
  31. Lasker HR, Gottfried MD, Coffroth MA (1983) Effects of depth on the feeding capabilities of two octocorals. Mar Biol 73:73–78CrossRefGoogle Scholar
  32. Lewis JN (1982) Feeding behaviour and feeding ecology of the Octocorallia (Coelenterata, Anthozoa). J Zool (Lond) 196:371–384CrossRefGoogle Scholar
  33. Lincoln R, Boxhall G, Clark P (1998) A dictionary for ecology, evolution and systematics. Cambridge University Press, CambridgeGoogle Scholar
  34. Margalef R (1985) Western Mediterranean. Pergamon, OxfordGoogle Scholar
  35. Mariscal RN, Bigger CH (1977) Possible ecological significance of octocoral epithelial ultrastructure. In: Taylor DL (ed) Proceedings of the 3rd international coral reef symposium, vol 1. Miami School of Atmospheric Sciences, University of Miami, Miami, pp 127–134Google Scholar
  36. Marschal C, Garrabou J, Harmelin JG (2004) A new method for measuring growth and age in the precious red coral Corallium rubrum (L.). Coral reefs 23:423–432CrossRefGoogle Scholar
  37. Marchetti R (1965) Ricerche sul corallo rosso della costa ligure e toscana. Distribuzione geographica. Rend Ist Lomb Sci Lett B 99:255–278Google Scholar
  38. McFadden CS (1986) A comparative demographic analysis of coral reproduction in a temperate soft coral. Ecol Soc Am 72:1849–1866Google Scholar
  39. Officer CB, Smayda TJ, Mann R (1982) Benthic filter feeding: a natural eutrophication control. Mar Ecol Prog Ser 9:203–210CrossRefGoogle Scholar
  40. Okamura B (1985) Behavioural plasticity in the suspension feeding of benthic animals. In: Hughes RN (ed) Behavioural mechanisms of food selection. Springer, Berlin, Heidelberg, New York, pp 637–660Google Scholar
  41. Orejas C, Gili JM, Alvà V, Arntz W (2000) Predatory impact of an epiphytic hydrozoan in an upwelling area in the Bay of Coliumo (Dichato, Chile). J Sea Res 44:209–220CrossRefGoogle Scholar
  42. Orejas C, Gili JM, López-González PJ, Arntz WE (2001) Feeding strategies and diet composition of four Antarctic cnidarian species. Polar Biol 24:620–627CrossRefGoogle Scholar
  43. Patterson MR (1984) Passive suspension feeding by an octocoral in plankton patches: empirical test of a mathematical model. Biol Bull 180: 81–92CrossRefGoogle Scholar
  44. Petersen JK, Riisgård HU (1992) Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar Ecol Prog Ser 88:9–17CrossRefGoogle Scholar
  45. Pile AJ, Patterson MR, Witman JD (1996) In situ grazing on plankton >10 mm by the boreal sponge Mycale lingua. Mar Ecol Prog Ser 141:95–102CrossRefGoogle Scholar
  46. Ribera d’Alcalá M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiorno V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci Mar 68:65–83CrossRefGoogle Scholar
  47. Ribes M, Coma R, Gili JM (1998) Heterotrophic feeding by gorgonian corals with symbiotic zooxanthella. Limnol Oceanogr 43:1170–1179CrossRefGoogle Scholar
  48. Ribes M, Coma R, Gili JM (1999a) Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser 176:179–190CrossRefGoogle Scholar
  49. Ribes M, Coma R, Gili JM (1999b) Heterogenous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar Ecol Prog Ser 183:125–137CrossRefGoogle Scholar
  50. Ribes M, Coma R, Gili JM, Svoboda A, Juliá A, Parera J (2000) A ‘semi-closed’ recirculating system for the in situ study of feeding and respiration of benthic suspension feeders. Sci Mar 64:265–275CrossRefGoogle Scholar
  51. Ribes M, Coma R, Rossi S (2003) Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar Ecol Prog Ser 254:141–150CrossRefGoogle Scholar
  52. Riedl R (1984) Fauna und Flora des Mittelmeers. Paul Parey, HamburgGoogle Scholar
  53. Riisgård HU, Jensen AS, Jürgensen C (1998) Hydrography, near-bottom currents, and grazing impact of the filter-feeding ascidian Ciona intestinalis in a Danish fjord. Ophelia 49:1–16CrossRefGoogle Scholar
  54. Rossi S (2002) Environmental factors affecting the trophic ecology of benthic suspension feeders. Ph.D. thesis, University of BarcelonaGoogle Scholar
  55. Rossi S, Grémare A, Gili JM, Amouroux JM, Jordana E, Vétion G (2003) Biochemical characteristics of settling particulate organic matter at two north-western Mediterranean sites: a seasonal comparison. Coast Est Shelf Sci 58:423–434CrossRefGoogle Scholar
  56. Rossi S, Ribes M, Coma R, Gili JM (2004) Temporal variability in zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar Biol 144:89–99CrossRefGoogle Scholar
  57. Russo GF, Zupo V, Piraino S, Ulianich L, Cicogna F (1993) Feeding and experimental aspects of the feeding biology of red coral. In: Cicogna F, Cattaneo-Vietti R (eds) Red coral in the Mediterranean Sea: art, history and science. Ministerio delle Risorse Agricole, Almentari e Forestali, Roma pp 159–179Google Scholar
  58. Santangelo G, Abbiati M (2001) Red coral: conservation and management of an over-exploited Mediterranean species. Aquat: Conserv Mar Freshw Ecosys 11:253–259Google Scholar
  59. Santangelo G, Maggi E, Bramanti L, Bongiorni L (2003a) Demography of the over-exploited Mediterranean red coral (Corallium rubrum L. 1758)Sci Mar 68:199–204CrossRefGoogle Scholar
  60. Santangelo G, Carletti E, Maggi E, Bramanti L (2003b) Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar Ecol Prog Ser 248:99–108CrossRefGoogle Scholar
  61. Sebens KP, Koehl MAR, (1984) Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Mar Biol 81:255–27CrossRefGoogle Scholar
  62. Sebens KP, Witting J, Helmuth B (1997) The effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchaissaing and Michelotti). J Exp Mar Biol 211:1–28CrossRefGoogle Scholar
  63. Siokou-Frangou I (1996) Zooplankton annual cycle in a Mediterranean coastal area. J Plant Res 18:203–223Google Scholar
  64. True MA (1970) Étude quantitative de quatre peuplements sciaphiles sur substrat rocheux dans la région marseillaise. Bull Inst Oceanogr Monaco 69:1–48Google Scholar
  65. Tsounis G (2005) Demography, reproductive biology and trophic ecology of red coral (Corallium rubrum L.) at the Costa Brava (NW Mediterranean): ecological data as a tool for management. PhD Thesis, University of Bremen, GermanyGoogle Scholar
  66. Weinbauer MG, Velimirov B (1998) Comparative morphometry of fan-like colonies of three Mediterranean gorgonians (Cnidaria: Gorgonacea). Cah Biol Mar 39:41–49Google Scholar
  67. Weinberg S (1979) The light dependent behaviour of planula larvae of Eunicella singularis and Corallium rubrum and its implication for octocorallian ecology. Bijdr Dierk 49:145–151Google Scholar
  68. Zar JH (1996) Biostatistical analysis. Prentice-Hall, Englewood CliffsGoogle Scholar
  69. Zibrowius H, Montero M, Grashoff M (1984) La répartition du Corallium rubrum dans l´Atlantique. Thétis 11:163–170Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Georgios Tsounis
    • 1
    Email author
  • Sergio Rossi
    • 2
  • Jürgen Laudien
    • 1
  • Lorenzo Bramanti
    • 3
  • Neus Fernández
    • 2
  • Josep-Maria Gili
    • 2
  • Wolf Arntz
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Institut de Ciències del Mar (CSIC)BarcelonaSpain
  3. 3.Dipartimento Etologia, Ecologia, EvoluzioneUniversity of PisaPisaItaly

Personalised recommendations