Skip to main content

Advertisement

Log in

Evolution of habitat use by deep-sea mussels

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Previous phylogenetic studies proposed that symbiont-bearing mussels of the subfamily Bathymodiolinae (Bivalvia: Mytilidae) invaded progressively deeper marine environments and evolved from lineages that decomposed wood and bone to specialized lineages that invaded cold-water hydrocarbon seeps and finally deep-sea hydrothermal vents. To assess the validity of the hypotheses, we examined two nuclear (18S and 28S rRNA) and two mitochondrial genes (COI and ND4) from a broad array of bathymodiolin species that included several recently discovered species from shallow hydrothermal seamounts. Bayesian phylogenetic analysis and maximum-likelihood estimates of ancestral character states revealed that vent species evolved multiple times, and that reversals in vent and seep habitat use occurred within the sampled taxa. Previous hypotheses regarding evolution from wood/bone-to-seeps/vents are supported in that mid-ocean hydrothermal vent species may represent a monophyletic group with one noticeable reversal. Earlier hypotheses about progressive evolution from shallow-to-deep habitats appear to hold with a few instances of habitat reversals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  • Arevalo E, Davis SK, Sites JW Jr (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloperus grammicus complex (Phrynosomatidae) in Central Mexico. Syst Biol 43:387–418

    Article  Google Scholar 

  • Baco AR, Smith CR (2003) High species richness in deep-sea chemoautotrophic whale skeleton communities. Mar Ecol Prog Ser 260:109–114

    Article  Google Scholar 

  • Bielawski JP, Gold JR (1996) Unequal synonymous substitution rates within and between two protein-coding mitochondrial genes. Mol Biol Evol 13:880–992

    Article  Google Scholar 

  • Bollback JP (2004) SIMMAP version 1.0: a program for stochastic mapping of molecular and morphological characters. Copenhagen, Denmark. http://brahms.ucsd.edu/simmap.html

  • Brodsky LI, Vasisiev AV, Kalaidzidis YL, Osipov YS, Tatuzov RL, Feranchuk SI (1992) GeneBee: the program package for biopolymer structure analysis. Dimacs 6:127–139

    Google Scholar 

  • Chevaldonné P, Jollivet D, Desbruyères D, Lutz RA, Vrijenhoek RC (2002) Sister-species of eastern Pacific hydrothermal-vent worms (Ampharetidae, Alvinelidae, Vestimentifera) provide new mitochondrial clock calibration. Cahiers Biol Mar 43:367–370

    Google Scholar 

  • von Cosel R (2002) A new species of bathymodioline mussel (Mollusca, Bivalvia, Mytilidae) from Mauritania (West Africa), with comments on the genus Bathymodiolus Kenk & Wilson, 1985. Zoosystema 24:259–271

    Google Scholar 

  • von Cosel R, Comtet T, Krylova E (1997) Two new species of Bathymodiolus from hydrothermal vents on the Mid-Atlantic Ridge. Cahiers Biol Mar 38:145–146

    Google Scholar 

  • von Cosel R, Comtet T, Krylova E (1999) Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents on the Azores triple junction and the Logatchev hydrothermal field, Mid-Atlantic Ridge. The Veliger 42:218–248

    Google Scholar 

  • von Cosel R, Marshall BA (2003) Two new species of large mussels (Bivalvia: Mytilidae) from active submarine volcanoes and a cold seep off the eastern North Island of New Zealand, with description of a new genus. The Nautilus 117:31–46

    Google Scholar 

  • von Cosel R, Métivier B, Hashimoto J (1994) Three new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents in the Lau Basin and the Fiji Basin, Western Pacific, and the Snake Pit Area, Mid-Atlantic Ridge. The Veliger 37:374–392

    Google Scholar 

  • von Cosel R, Olu K (1998) Gigantism in Mytilidae. A new Bathymodiolus from cold seep areas on the Barbados Accretionary Prism. Anim Biol 321:655–663

    Google Scholar 

  • Craddock C, Hoeh WR, Gustafson RG, Lutz RA, Hashimoto J, Vrijenhoek RC (1995a) Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Mar Biol 121:477–485

    Article  Google Scholar 

  • Craddock C, Hoeh WR, Lutz RA, Vrijenhoek RC (1995b) Extensive gene flow in the deep-sea hydrothermal vent mytilid Bathymodiolus thermophilus. Mar Biol 124:137–146

    Article  Google Scholar 

  • Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, Smith CR (2000) Do mussels take wooden steps to deep-sea vents? Nature 403:725–726

    Article  CAS  Google Scholar 

  • Drummond A, Rambaut A (2003) BEAST version 1.0.3: Bayesian evolutionary analysis sampling trees. Oxford, UK. http://evolve.zoo.ox.ac.uk/beast/

  • Felsenstein J (1985) Confidence limits in phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fisher CR, Childress JJ, Oremland RS, Bidigare RR (1987) The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar Biol 96:59–71

    Article  CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  Google Scholar 

  • Giribet G, Carranza S, Baguna J, Riutort M, Ribera C (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biolo Evol 13:76–84

    Article  CAS  Google Scholar 

  • Gustafson RG, Turner RD, Lutz RA, Vrijenhoek RC (1998) A new genus and five species of mussels (Bivalvia, Mytilidae) from deep-sea sulfide/hydrocarbon seeps in the Gulf of Mexico. Malacologia 40:63–113

    Google Scholar 

  • Hashimoto J, Okutani T (1994) Four new mytilid mussels associated with deep-sea chemosynthetic communities around Japan. Venus 53:61–83

    Google Scholar 

  • Hoeh WR, Blakley KH, Brown WM (1991) Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science 251:1488–1490

    Article  CAS  Google Scholar 

  • Hoeh WR, Stewart DT, Sutherland BW, Zouros E (1996) Multiple origins of gender-associated mitochondrial DNA lineages in bivalves (Mollusca: Bivalvia). Evolution 50:2276–2286

    Article  CAS  Google Scholar 

  • Hoeh W, Stewart D, SI G (2002) High fidelity of mitochondrial genome transmission under the doubly uniparental mode of inheritance in freshwater mussels (Bivalvia: Unionoidea). Evolution 56:2252–2261

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Nielsen R, Bollback JP (2003) Stochastic mapping of morphological characters. Syst Biol 52:131–158

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  Google Scholar 

  • Jacobs DK, Lindberg DR (1998) Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc Natl Acad Sci USA 95:9396–9401

    Article  CAS  Google Scholar 

  • Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis. Pennsylvania State University, University Park

    Google Scholar 

  • Little CTS, Vrijenhoek RC (2003) Are hydrothermal vent animals living fossils? Trends Ecol Evol 18:582–588

    Article  Google Scholar 

  • Maddison DR, Maddison WP (2004) Mesquite, version 1.04 (build g21). Tucson, AZ. http://mesquiteproject.org

  • Miyazaki J-I, Shintaku M, Kyuno A, Fujiwara Y, Hashimoto J, Iwasaki H (2004) Phylogenetic relationships of deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae). Mar Biol 144:527–535

    Article  Google Scholar 

  • Passamonti M, Scali V (2001) Gender-associated mitochondrial DNA heteroplasmy in the venerid clam Tapes philippinarum (Mollusca Bivalvia). Curr Genet 39:117–124

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  Google Scholar 

  • Rambaut A, Drummond A (2003) Tracer: a program for analysing results from Bayesian MCMC programs such as BEAST & MrBayes. Oxford, UK. http://evolve.zoo.ox.ac.uk/software.html?id=tracer

  • Scholin CA, Anderson DM (1994) Identification of group- and strain-specific genetic markers from globally distributed Alexandrium (Dinophyceae). I. RFLP analysis of SSU rRNA genes. J Phycol 30:744–754

    Article  CAS  Google Scholar 

  • Smith PJ, McVeagh SM, Won YJ, Vrijenhoek RC (2004) Genetic heterogeneity among New Zealand species of hydrothermal vent mussels (Mytilidae: Bathymodiolus). Mar Biol 144: 537–545

    Article  Google Scholar 

  • Swofford DL (1998) PAUP* Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland

    Google Scholar 

  • Wilcox TP, García de Leon FJ, Hendrickson DA, Hillis DM (2004) Convergence among cave catfishes: long-branch attraction and a Bayesian relative rates test. Mol Phylogenet Evol 31:1101–1113

    Article  CAS  Google Scholar 

  • Wilcox TP, Zwickl DJ, Heath TA, Hillis DM (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25:361–371

    Article  CAS  Google Scholar 

  • Won Y, Hallam SJ, O’Mullan GD, Vrijenhoek RC (2003a) Cytonuclear disequilibrium in a hybrid zone involving deep-sea hydrothermal vent mussels of the genus Bathymodiolus. Mol Ecol 12:3185–3190

    Article  CAS  Google Scholar 

  • Won Y, Young CR, Lutz RA, Vrijenhoek RC (2003b) Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents. Mol Ecol 12:169–184

    Article  CAS  Google Scholar 

  • Won Y-J, Maas PAY, Dover CLV, Vrijenhoek RC (2002) Habitat reversal in vent and seep mussels: seep species, Bathymodiolus heckerae, derived from vent ancestors. Cahiers Biol Mar 34:387–390

    Google Scholar 

Download references

Acknowledgments

We gratefully appreciate the efforts of the pilots of the deep-sea submersibles Alvin, Johnson Sea Link, Shinkai 6500 and Tiburon during our oceanographic expeditions over the past 15 years. We thank J. Childress, C. Fisher, I. MacDonald for providing mussel specimens from the Gulf of Mexico, and C.R. Young for help with the Bayesian analysis. We also thank P. Braccio for help using XGrid and parallel versions of MrBayes. C.L. Van Dover provided comments on data interpretation. P.J.S. was supported by the New Zealand Foundation for Research Science and Technology (contract # COIX0028). This study was funded by the US National Science Foundation (OCE8917311, OCE9212771, OCE9302205, OCE9529819, OCE9633131, OCE9910799, ESI0087679, OCE0327353 and OCE0241613) and the David & Lucile Packard Foundation via the Monterey Bay Aquarium Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.J. Jones.

Additional information

Communicated by R.T. Thompson, St. John’s

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, W., Won, YJ., Maas, P. et al. Evolution of habitat use by deep-sea mussels. Marine Biology 148, 841–851 (2006). https://doi.org/10.1007/s00227-005-0115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0115-1

Keywords

Navigation