Skip to main content
Log in

Release of phagocytosis-stimulating factor(s) by morula cells in a colonial ascidian

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In vitro yeast phagocytosis by haemocytes of the compound ascidian Botryllus schlosseri was studied, with particular attention to interactions among different immunocyte types. It is demonstrated that the supernatant from haemocyte cultures matched with yeast cells contains factor(s) able to enhance yeast ingestion by Botryllus phagocytes. The increase in phagocytosis is not the consequence of yeast opsonisation, as the phagocytic index does not significantly increase when yeast cells, previously incubated in the culture media, are washed and re-suspended in filtered sea water. When haemocytes were fractionated by density gradient centrifugation and each band was incubated with yeast, the ability to stimulate phagocytosis was found in the supernatants from haemocyte cultures of fractions rich in morula cells (MC). Previous studies have demonstrated that MC express molecules recognised by anti-cytokine antibodies, as a consequence of the recognition of foreign molecules or cells. Our results indicate that molecules immunoreactive with anti-cytokine antibodies are required for modulating phagocyte activity, as the above-reported enhancing effect is completely absent in the presence of anti-IL-1-α and anti-TNF-α, but not of anti-rabbit-IgG antibodies, and they also highlight the presence of ‘cross-talk‘ between MC and phagocytes. A new scenario is therefore sketched, in which MC actively recognise non-self molecular patterns and, upon this recognition, release humoural factor(s) recognised by phagocytes, which modulate phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH, Pober JS (2000) Cellular and molecular immunology. WB Saunders Company, Philadelphia

    Google Scholar 

  • Azumi K, Ishimoto R, Fujita T, Nonaka M, Yokosawa H (2000) Opsonin-independent and—dependent phagocytosis in the ascidian Halocynthia roretzi: galactose-specific lectin and complement C3 functions as target-dependent opsonins. Zool Sci 17:625–632

    Article  CAS  Google Scholar 

  • Azumi K, Kuribayashi F, Kanegasaki S, Yokosawa H (2002) Zymosan induces production of superoxide anions by hemocytes of the solitary ascidian Halocynthia roretzi. Comp Biochem Physiol 133C:567–574

    Google Scholar 

  • Azumi K, De Santis R, De Tomaso A, Rigoutsos I, Yoshizaki F, Pinto MR, Marino R, Shida K, Ikeda M, Ikeda M, Arai M, Inoue Y, Shimizu T, Satoh N, Rokhsar DS, Du Pasquier L, Kasahara M, Satake M, Nonaka M (2003) Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics 55:570–581

    Article  CAS  Google Scholar 

  • Ballarin L, Cima F (2005) Cytochemical properties of Botryllus schlosseri haemocytes: indications for morpho-functional characterisation. Eur J Histochem 49 (in press)

  • Ballarin L, Cima F, Sabbadin A (1993) Histoenzymatic staining and characterization of the colonial ascidian Botryllus schlosseri hemocytes. Boll Zool 60:19–24

    Article  Google Scholar 

  • Ballarin L, Cima F, Sabbadin A (1994) Phagocytosis in the colonial ascidian Botryllus schlosseri. Dev Comp Immunol 18:467–481

    Article  CAS  Google Scholar 

  • Ballarin L, Cima F, Sabbadin A (1995) Morula cells and histocompatibility in the colonial ascidian Botryllus schlosseri. Zool Sci 12:757–764

    Article  Google Scholar 

  • Ballarin L, Cima F, Sabbadin A (1998) Phenoloxidase and cytotoxicity in the compound ascidian Botryllus schlosseri. Dev Comp Immunol 22:479–492

    Article  CAS  Google Scholar 

  • Ballarin L, Tonello C, Guidolin L, Sabbadin A (1999) Purification and characterization of a humoral opsonin, with specificity for d-galactose, in the colonial ascidian Botryllus schlosseri. Comp Biochem Physiol 123B:115–123

    Article  CAS  Google Scholar 

  • Ballarin L, Tonello C, Sabbadin A (2000) Humoral opsonin from the colonial ascidian Botryllus schlosseri as a member of the galectin family. Mar Biol 136:813–822

    Article  Google Scholar 

  • Ballarin L, Franchini A, Ottaviani E, Sabbadin A (2001) Morula cells as the main immunomodulatory haemocytes in ascidians: evidences from the colonial species Botryllus schlosseri. Biol Bull 201:59–64

    Article  CAS  Google Scholar 

  • Ballarin L, Scanferla M, Cima F, Sabbadin A (2002a) Phagocyte spreading and phagocytosis in the compound ascidian Botryllus schlosseri: evidence for an integrin-like, RGD-dependent recognition mechanism. Dev Comp Immunol 26:39–48

    Article  Google Scholar 

  • Ballarin L, Cima F, Floreani M, Sabbadin A (2002b) Oxidative stress induces cytotoxicity during rejection reaction in the compound ascidian Botryllus schlosseri. Comp Biochem Physiol 133C:411–418

    Article  Google Scholar 

  • Ballarin L, Menin A, Franchi N, Bertoloni G, Cima F (2005) Morula cells and non-self recognition in the compound ascidian Botryllus schlosseri. Invertebr Surv J 2:1–5

    Google Scholar 

  • Beck G (1998) Macrokines: invertebrate cytokine-like molecules? Front Biosci 3:D559–D569

    Article  CAS  Google Scholar 

  • Beck G, Vasta GR, Marchalonis JJ, Habicht GS (1989) Characterization of interleukin-1 activity in tunicates. Comp Biochem Physiol 92B:93–98

    CAS  Google Scholar 

  • Beck G, O’Brien RF, Habicht GS, Stillman DL, Cooper EL, Raftos DA (1993) Invertebrate cytokines III: invertebrate interleukin-1-like molecules stimulate phagocytosis by tunicate and echinoderm cells. Cell Immunol 146:284–299

    Article  Google Scholar 

  • Beck G, Cardinale S, Wang L, Reiner M, Sugumaran M (1996) Characterization of a defense complex consisting of interleukin I and phenol oxidase from the hemolymph of the tobacco hornworm, Manduca sexta. J Biol Chem 271:11035–11038

    Article  CAS  Google Scholar 

  • Carballal MJ, Lopez C, Azevedo C, Villalba A (1997) Enzymes involved in defense functions of hemocytes of mussel Mytilus galloprovincialis. J Invertebr Pathol 70:96–105

    Article  CAS  Google Scholar 

  • Cima F, Ballarin L, Sabbadin A (1996) New data on phagocytes and phagocytosis in the compound ascidian Botryllus schlosseri (Tunicata: Ascidiacea). Ital J Zool 63:357–364

    Article  Google Scholar 

  • Cima F, Matozzo V, Marin MG, Ballarin L (2000) Haemocytes of the clam Tapes philippinarum: morphofunctional characterisation. Fish Shellfish Immunol 10:677–693

    Article  CAS  Google Scholar 

  • Cima F, Perin A, Burighel P, Ballarin L (2001) Morpho-functional characterisation of haemocytes of the compound ascidian Botrylloides leachi (Tunicata, Ascidiacea). Acta Zool 82:261–274

    Article  Google Scholar 

  • Cima F, Basso G, Ballarin L (2003) Apoptosis and phosphatidylserine-mediated recognition during the take-over phase of the colonial life-cycle in the ascidian Botryllus schlosseri. Cell Tissue Res 312:369–376

    Article  Google Scholar 

  • Cima F, Sabbadin A, Ballarin L (2004) Cellular aspects of allorecognition in the compound ascidian Botryllus schlosseri. Dev Comp Immunol 28:881–889

    Article  CAS  Google Scholar 

  • Clow LA, Raftos DA, Gross PS, Courtney Smith L (2004) The sea urchin complement homologue, SpC3, functions as an opsonin. J Exp Biol 207:2147–2155

    Article  CAS  Google Scholar 

  • Coombe DR, Ey PL, Jenkin CR (1984) Particle recognition by haemocytes from the colonial ascidian Botrylloides leachi: evidence that the B. leachi HA-2 is opsonic. J Comp Physiol Bull 154:509–521

    Article  Google Scholar 

  • Fryer SE, Hull CJ, Bayne CJ (1989) Phagocytosis of yeast by Biomphalaria glabrata: carbohydrate specificity of hemocyte receptors and a plasma opsonin. Dev Comp Immunol 13:9–16

    Article  CAS  Google Scholar 

  • Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  • Kelly KL, Cooper EL, Raftos DA (1992) A humoral opsonin from the solitary Urochordate Styela clava. Comp Biochem Physiol 103B:749–753

    CAS  Google Scholar 

  • Kelly KL, Cooper EL, Raftos DA (1993) Cytokine-like activity of a humoral opsonin from the solitary urochordate Styela clava . Zool Sci 10:57–64

    CAS  Google Scholar 

  • Lopez C, Carballal MJ, Azevedo C, Villalba A (1997) Morphological characterization of the hemocytes of the clam, Ruditapes decussatus (Mollusca: Bivalvia). J Invertebr Pathol 69:51–57

    Article  CAS  Google Scholar 

  • Michibata H, Hirata J, Uesaka M, Namakunai T (1987) Separation of vanadocytes: determination and characterization of vanadium ions in the separated blood cells of the ascidian, Ascidia ahodori. J Exp Zool 24:33–38

    Article  Google Scholar 

  • Nonaka M, Azumi K (1999) Opsonic complement system of the solitary ascidian, Halocynthia roretzi. Dev Comp Immunol 23:421–427

    Article  CAS  Google Scholar 

  • Nonaka M, Azumi K, Ji X, Namikawa-Yamada C, Sasaki M, Saiga H, Dodds AW, Sekine H, Homma MK, Matsushita M, Endo Y, Fujita T (1999) Opsonic complement component C3 in the solitary ascidian, Halocynthia roretzi. J Immunol 162:387–391

    CAS  Google Scholar 

  • Ohtake S, Abe T, Shishikura F, Tanaka K (1994) The phagocytes in hemolymph of Halocynthia roretzi and their phagocytic activity. Zool Sci 11:681–691

    Google Scholar 

  • Raftos DA, Cooper EL, Habicht GS, Beck G (1991) Invertebrate cytokines: tunicate cell proliferation stimulated by an interleukin 1-like molecule. Proc Natl Acad Sci USA 88:9518–9522

    Article  CAS  Google Scholar 

  • Raftos DA, Cooper EL, Stillman DL, Habicht GS, Beck G (1992) Invertebrate cytokines II: release of interleukin-1-like molecules from tunicate hemocytes stimulated with zymosan. Lymphokine Cytokine Res 11:235–240

    CAS  Google Scholar 

  • Raftos DA, Stillman DL, Cooper EL (1998) Chemotactic responses of tunicate (Urochordata, Ascidiacea) hemocytes in vitro. J Invertebr Pathol 72:44–49

    Article  CAS  Google Scholar 

  • Sekine H, Kenjo A, Azumi K, Ohi G, Takahashi M, Kasukawa R, Ichikawa N, Nakata M, Mizuochi T, Matsushita M, Endo Y, Fujita T (2001) An ancient lectin-dependent complement system in an ascidian: novel lectin isolated from the plasma of the solitary ascidian, Halocynthia roretzi. J Immunol 167:4504–4510

    Article  CAS  Google Scholar 

  • Sminia T, Van der Knaap WPW, Edelenbosch P (1979) The role of serum factors in phagocytosis of foreign particles by blood cells of the freshwater snail Lymnaea stagnalis. Dev Comp Immunol 3:37–44

    Article  CAS  Google Scholar 

  • Smith VJ, Peddie CM (1992) Cell cooperation during host defense in the solitary tunicate Ciona intestinalis (L.). Biol Bull 183:211–219

    Article  CAS  Google Scholar 

  • Takahashi H, Azumi K, Yokosawa H (1995) A novel membrane glycoprotein involved in ascidian hemocyte aggregation and phagocytosis. Eur J Biochem 233:778–783

    Article  CAS  Google Scholar 

  • Tripp MR (1992) Phagocytosis by hemocytes of the hard clam, Mercenaria mercenaria. J Invertebr Pathol 59:222–227

    Article  CAS  Google Scholar 

  • Wiesner A, Wittwer D, Götz P (1996) A small phagocytosis stimulating factor is released by and acts on phagocytosing Galleria mellonella haemocytes in vitro. J Insect Physiol 42:829–835

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian M.I.U.R. (PRIN 2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loriano Ballarin.

Additional information

Communicated by R. Cattaneo-Vietti, Genova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menin, A., Favero, M.d., Cima, F. et al. Release of phagocytosis-stimulating factor(s) by morula cells in a colonial ascidian. Marine Biology 148, 225–230 (2005). https://doi.org/10.1007/s00227-005-0081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0081-7

Keywords

Navigation