Marine Biology

, Volume 148, Issue 1, pp 117–122 | Cite as

Relationship between egg features and maternal body size in the simultaneous hermaphrodite Oxynoe olivacea (Mollusca, Opisthobranchia, Sacoglossa)

  • P. GianguzzaEmail author
  • K. R. Jensen
  • F. Badalamenti
  • S. Riggio
Research Article


This paper provides information on spawn morphology and egg features of the stenophagous planktotrophic Mediterranean sacoglossan Oxynoe olivacea. Smith and Fretwell’s hypothesis, predicting that individuals of the same population growing in the same environmental conditions and varying in size should spawn eggs of a constant size, was tested in a population of O. olivacea living in the Straits of Messina. To determine whether (a) spawn mass size, (b) total egg number per spawn, and (c) egg size were related to parent size of O. olivacea, 21 egg masses (seven egg masses deposited by seven different 20 mm animals, seven egg masses deposited by seven different 25 mm animals and seven egg masses by seven different 30 mm animals) were randomly chosen and examined. Results showed that both spawn mass width and number of eggs per spawn mass increased across O. olivacea body size and apart from the significant variation of the short capsule diameter, there was no consistent variation of egg features in O. olivacea. In conclusion the species allocates constant amounts of energy to individual embryos and thus supports the prediction designed by Smith and Fretwell.


Offspring Size Capsule Size Simultaneous Hermaphrodite Maternal Size Offspring Trait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to Julie-Anne Buck for revising the English text. Giuseppe Di Carlo made constructive and challenging comments that improved the paper. This study is part of PhD thesis by Paola Gianguzza and was funded by the M.U.R.S.T. ex 60% research project to Prof. Silvano Riggio. Experiments described in this paper comply with Italian current laws.


  1. Angeloni L (2003) Sexual selection in a simultaneous hermaphrodite with hypodermic insemination: body size, allocation to sexual roles and paternity. Anim Behav 66:417–426CrossRefGoogle Scholar
  2. Begon M, Parker GA (1986) Should egg size and clutch size decrease with age? Oikos 47:293–302CrossRefGoogle Scholar
  3. Bernardo J (1996) Maternal effect in animal ecology. Am Zool 36:83–105CrossRefGoogle Scholar
  4. Chaparro OR, Oyarzun RF, Vergara AM, Thompson (1999) Energy investment in nurse egg and egg capsule in Crepidula dilatata Lamark (Gastropoda, Calyptraeidae) and its influence on the hatching size of the juvenile. J Exp Mar Biol Ecol 232:261–274CrossRefGoogle Scholar
  5. Chia FS (1971) Oviposition, fecundity and larval development of three sacoglossan opisthobranchs from the Northumberland coasts, England. Veliger 16:319–325Google Scholar
  6. Christiansen FB, Fenchel TM (1979) Evolution of marine invertebrate reproductive patterns. Theor Popul Biol 16:267–282CrossRefGoogle Scholar
  7. Clark KB, Goetzfried A (1978) Zoogeographic influences on development patterns of North Atlantic Ascoglossa and Nudibranchia, with a discussion of factors affecting egg size and number. J Moll Stud 44:283–294Google Scholar
  8. Clark KB, Jensen KR (1981) A comparison of egg size, capsule size, and development patterns in the order Ascoglossa (Sacoglossa) (Mollusca: Opisthobranchia). Int J Invert Reprod 3:57–68CrossRefGoogle Scholar
  9. Clark KB, Busacca M, Stirts H (1979) Nutritional aspects of development of the ascoglossan, Elysia cauze. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, pp 11–24Google Scholar
  10. DeFreese D, Clark KB (1983) Analysis of reproductive energetics of Florida Opisthobranchia (Mollusca: Gastropoda). Int J Invert Reprod 6:1–10CrossRefGoogle Scholar
  11. Einum S, Fleming IA (1999) Maternal effect of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality. Pro R Soc Lond Ser B 266:2095–2100CrossRefGoogle Scholar
  12. Eyster LS (1979) Reproduction and developmental variability in the opisthobranch Tenellia pallida. Mar Biol 51:133–144CrossRefGoogle Scholar
  13. Gianguzza P (2001) Relazioni funzionali tra molluschi opistobranchi dell’ordine sacoglossa e alghe verdi sifonali del genere Caulerpa. Ph.D thesis, Università degli Studi di Palermo, ItalyGoogle Scholar
  14. Gianguzza P, Monteverde G, Airoldi L, Jensen KR, Riggio S (2001) Observations on copulatory behaviour in Oxynoe olivacea (Mollusca, Opistobranchia, Sacoglossa). Biol Mar Medit 8:602–604Google Scholar
  15. Gianguzza P, Airoldi L, Chemello R, Todd C D, Riggio S (2002) Feeding preferences of Oxynoe olivacea (Mollusca, Opisthobranchia, Sacoglossa) among three Caulerpa species. J Moll Stud 68:315–316CrossRefGoogle Scholar
  16. Gianguzza P, Badalamenti F, Jensen KR, Chemello R, Cannicci S, Riggio S (2004) Body size and mating strategies in the simultaneous hermaphrodite Oxynoe olivacea (Mollusca, Opisthobranchia, Sacoglossa). Funct Ecol 18:899–906CrossRefGoogle Scholar
  17. Gibson GD, Chia FS (1995) Developmental variability in the poecilogonous opisthobranch Haminaea callidegenita: life history traits and effects of environmental parameters. Mar Ecol Prog Ser 121:139–155CrossRefGoogle Scholar
  18. Gonor JJ (1961) Observations on the biology of Lobiger serradifalci, shelled sacoglossans opisthobranch from the Mediterranean. Vie et Milieu 12:381–403Google Scholar
  19. Hadfield MG, Switzer Dunlap MF (1984) Reproduction in opisthobranchs. In: Wilbur K (ed) The biology of molluscs. Academic, New York, pp 209–350Google Scholar
  20. Hadfield MG, Miller SE (1987) On developmental patterns of opisthobranchs. Am Malacol Bull 5:197–214Google Scholar
  21. Havenhand JN, Todd CD (1999) Reproductive effort of the nudibranch molluscs Adalaria proxima (Alder & Hancock) and Onchiodoris muricata (Müller): an evaluation of techniques. Funct Ecol 3:153–163CrossRefGoogle Scholar
  22. Hendry AP, Day T (2003) Revisiting the positive correlation between female size and egg size. Evol Ecol Res 5:421–429Google Scholar
  23. Hurst A (1967) The egg masses and veligers of thirty northeast Pacific opisthobranchs. Veliger 9:255–288Google Scholar
  24. Ilano AS, Fujinaga K, Nakao S (2004) Mating, development and effects of female size on offspring number and size in the neogastropod Buccinum isaotakii (Kira, 1959). J Moll Stu 70:277–282CrossRefGoogle Scholar
  25. Ito K (1997) Egg-size and number variations related to maternal size and age, and the relationship between egg size and larval characteristics in an annual marine gastropod Haloa japonica (Opisthobranchia; Cephalaspidea). Mar Ecol Prog Ser 152:187–195CrossRefGoogle Scholar
  26. Jensen KR (1986a) Observations on feeding, copulation and spawing in Calliopaea oophaga Lemche (Opisthobranchia, Ascoglossa). Ophelia 25:97–106CrossRefGoogle Scholar
  27. Jensen KR (1986b) Observations on copulation in two species of Elysia (Opisthobranchia, Ascoglossa) from Florida. Ophelia 25:25–32CrossRefGoogle Scholar
  28. Jensen KR (1987) Effect of starvation on copulatory activity of Ercolania nigra (Lemche) (Opisthobranchia, Ascoglossa). Mar Beh Physiol 13:89–97CrossRefGoogle Scholar
  29. Jensen KR (1992) Anatomy of some Indo-Pacific Elysiidae (Opisthobranchia: Sacoglossa (=Ascoglossa)), with a discussion of the generic division and phylogeny. J Moll Stud 58:257–296CrossRefGoogle Scholar
  30. Jensen KR (1994) Behaviour adaptations and diet specificity of sacoglossan opisthobranchs. Ethol Ecol Evol 6:87–101CrossRefGoogle Scholar
  31. Jensen KR (1997a) Sacoglossernes systematik, fylogeni og evolution (Mollusca, Opisthobranchia). Systematics, phylogeny and evolution of the Sacoglossa (Mollusca, Opisthobranchia). Vestjydsk Forlag, Vinderup Bogtrykkery DenmarkGoogle Scholar
  32. Jensen KR (1997b) Sacoglossa (Mollusca, Opisthobranchia) from the Houtman Abrolhos Island and central Western Australia. In: Wells FE (ed) The marine flora and fauna of the Houtman Abrolhos Islands, Western Australia. Western Australian Museum, Perth, pp 307–333Google Scholar
  33. Jensen KR (1999) Copulatory behaviour in three shelled and five non-shelled sacoglossans (Mollusca, Opisthobranchia), with a discussion of the phylogenetic significance of copulatory behaviour. Ophelia 51:93–106CrossRefGoogle Scholar
  34. Jensen KR (2001) Review of reproduction in the Sacoglossa (Mollusca, Opisthobranchia). Boll Malacol 37:81–98Google Scholar
  35. Jensen KR (2003) Distributions, diets and reproduction of Hong Kong Sacoglossa (Mollusca: Opisthobranchia): a summary of data, 1980–2001. In: Morton B (ed) Perspectives on marine environmental change in Hong Kong and Southern China, 1977–2001. Proceedings of an international workshops reunion conference, Hong Kong 2001, Hong Kong University Press, Hong Kong, pp 347–365Google Scholar
  36. Jensen KR, Clark KB (1983) Annotated checklist of Florida ascoglossan Opisthobranchia. Nautilus 97:1–13Google Scholar
  37. Jones LH, Todd CD, Lambert WL (1996) Intraspecific variation in embryonic larval traits of the dorid nudibranch mollusc Adalaria proxima (Alder and Hancock) around the northen coasts of British Isles. J Exp Mar Biol Ecol 202:29–47CrossRefGoogle Scholar
  38. Kaplan RH, Cooper WS (1984) The evolution of developmental plasticity in reproductive characteristics: an application of the “adaptive coin-flipping” principle. Am Nat 123:393–410CrossRefGoogle Scholar
  39. Kress A (1971) Über die Entwicklung der Eikapselvolumina bei verschiedenen Opisthobranchier-Arten (Mollusca, Gastropoda). Helgoländer wiss. Meeresunters 22:326–349CrossRefGoogle Scholar
  40. Kress A (1972) Veränderungen der Eikapselvolumina während der Entwicklung verschiedener Opisthobranchier-Arten (Mollusca, Gastropoda). Mar Biol 16:236–252Google Scholar
  41. Krug PJ (1998) Poecilogony in an estuarine opisthobranch: planktotrophy, lecithotrophy, and mixed clutches in a population of the ascoglossan Alderia modesta. Mar Biol 132:483–494CrossRefGoogle Scholar
  42. Krug PJ (2001) Bet-hedging dispersal strategy of a specialist marine herbivore: a settlement dimorphism among sibling larvae of Alderia modesta. Mar Ecol Prog Ser 213:177–192CrossRefGoogle Scholar
  43. Lack D (1947) The significance of cluch size. Ibis 89:302–352CrossRefGoogle Scholar
  44. Lalonde RG (1991) Optimal offspring provisioning when resources are not predictable. Am Natur 138:680–686CrossRefGoogle Scholar
  45. Levitan DR (2000) Optimal egg size in marine invertebrates: theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. Am Natur 156:175–192CrossRefGoogle Scholar
  46. Lloyd DG (1987) Selection for offspring size at independence and other size-versus-number strategies. Am Nat 129:800–817CrossRefGoogle Scholar
  47. Marin A, Ross JD (1993) Ultrastructural and ecological aspects of the development of chloroplast retention in the sacoglossans Elysia timida. J Moll Stud 59:95–104CrossRefGoogle Scholar
  48. Marshall DJ, Keough AM (2005) Offspring size effects in the marine environment: a field test for a colonial invertebrate. Austral Ecol 30:275–280CrossRefGoogle Scholar
  49. McGinley MA, Temme DH, Geber MA (1987) Parental investment in offspring in variable environments: theoretical and empirical considerations. Am Natur 130:370–398CrossRefGoogle Scholar
  50. Miloslavich P, Defresne L (1994) Development and effect of female size of egg and juvenile production in the neogastropod Buccinum cyaneum from the Saguenay Fjord. Can J fish Aquat Sci 51:2866–2872CrossRefGoogle Scholar
  51. Moran AL, Emlet RB (2001) Offspring size and performance in variable environments: field study on a marine snail. Ecol 82:1597–1612CrossRefGoogle Scholar
  52. Parker GA, Begon M (1986) Optimal egg size and clutcg size: effect of environmental and maternal phenotype. Am Nat 128:573–592CrossRefGoogle Scholar
  53. Roff DA (2002) Life history evolution. Sinauer Associates Inc., SunderlandGoogle Scholar
  54. Sakai S, Harada Y (2001) Why do large mothers produce large offspring?: theory and a test. Am Natur 157:348–359CrossRefGoogle Scholar
  55. Sakai S, Harada Y (2004) Size-number trade-off and optimal offspring size for offspring produced sequentially using a fixed amount of reserves. J Theor Biol 226:253–264CrossRefGoogle Scholar
  56. Sakai S, Harada Y (2005) Production of offspring using current income and reserves: size-number trade-off and optimal offspring size. J Theor Biol 233:65–73CrossRefGoogle Scholar
  57. Sargent RC, Taylor PD, Gross MR (1987) Parental care and the evolution of egg size in fishes. Am Nat 129:32–46CrossRefGoogle Scholar
  58. Smith C, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499–506CrossRefGoogle Scholar
  59. Soliman GN (1987) A scheme for classifying gastropod egg masses with special reference to those from the Red Sea. J Moll Stud 53:1–12CrossRefGoogle Scholar
  60. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  61. Switzer-Dunlap M, Hadfield M G (1979) Reproductive patterns of Hawaiian Aplysiid gastropods. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, pp 199–210Google Scholar
  62. Switzer-Dunlap M, Meyers-Schulte K, Gardner EA (1984) The effect of size, age, and recent egg laying on copulatory choice of the hermaphroditic mollusc Aplysia juliana. Int J Repr Dev 7:217–225CrossRefGoogle Scholar
  63. Thibaut T, Meinesz A (2000) Are the Mediterranean ascoglossan molluscs Oxynoe olivacea and Lobiger seradifalci suitable agents for a biological control against the invading tropical alga Caulerpa taxifolia? C. R. Acad. Sci. Paris. Sciences de la vie. Life Sciences 323:477–488PubMedGoogle Scholar
  64. Todd CD, Lambert W, Davies J (2001) Some perspectives on the biology and ecology of nudibranch molluscs: generalisations and variations on the theme that proves the rule. Bollettino Malacologico 37:105–120Google Scholar
  65. Trowbridge CD (1992) Phenology and demography of a marine specialist herbivore: Placida dendritica (Gastropoda: Opisthobranchia) on the central coast of Oregon. Mar Biol 114:443–452CrossRefGoogle Scholar
  66. Trowbridge CD (1993) Local and regional abundance patterns of the sacoglossan (=ascoglossan) opisthobranch Alderia modesta (Lovén, 1844) in the Northeastern Pacific. Veliger 36:303–310Google Scholar
  67. Trowbridge CD (1995) Hypodermic insemination, oviposition, and embryonic development of a pool-dwelling ascoglossan (=sacoglossan) opisthobranch: Ercolania felina (Hutton, 1882) on New Zealand shores. Veliger 38:203–211Google Scholar
  68. Trowbridge CD (2000) The missing links: larval and post-larval development of the ascoglossan opisthobranch Elysia viridis. J Mar Biol Ass UK 80:1087–1094CrossRefGoogle Scholar
  69. Underwood AJ (1981) Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr Mar Biol Annu Rev 19:513–605Google Scholar
  70. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  71. Wägele H (1996) On egg clutches of some Antarctic Opisthobranchia. Malacological Review. Moll Repr 6:21–30Google Scholar
  72. West HH, Harrigan JF, Pierce SK (1984) Hybridization of two populations of marine opisthobranch with different development patterns. Veliger 26:199–206Google Scholar
  73. Williams SI, Walker DI (1999) Mesoherbivore-macroalgal interactions: feeding ecology of sacoglosan sea slugs (Mollusca, Opisthobranchia) and their effects on their food algae. Oceanogr Mar Biol Annu Rev 37:87–128Google Scholar
  74. Winer BJ (1971) Statistical principles in experimental designs, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  75. Yusa Y (1994) Size-related egg production in a simultaneous hermaphrodite, the sea hare Aplysia kurodai Baba (Mollusca: Opisthobranchia). Publ Seto Mar Biol Lab 36:249–254CrossRefGoogle Scholar
  76. Yusa Y (1996) The effect of body size on mating features in a field population of the hermaphroditic sea hare Aplysia kuroday Baba, 1937 (Gastropoda, Opisthobranchia). J Moll Stud 62:381–386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • P. Gianguzza
    • 1
    Email author
  • K. R. Jensen
    • 1
    • 2
  • F. Badalamenti
    • 1
    • 3
  • S. Riggio
    • 1
  1. 1.Dipartimento di Biologia AnimaleUniversità degli Studi di PalermoPalermoItaly
  2. 2.Zoological MuseumUniversitetsparken 15CopenhagenDenmark
  3. 3.CNR-IAMC Laboratorio di Biologia MarinaCastellammare del GolfoItaly

Personalised recommendations