Marine Biology

, Volume 148, Issue 1, pp 109–116 | Cite as

A new bathymodioline mussel symbiosis at the Juan de Fuca hydrothermal vents

  • Z. P. McKiness
  • E. R. McMullin
  • C. R. Fisher
  • C. M. CavanaughEmail author
Research Article


Until recently, the only major hydrothermal vent biogeographic province not known to include bathymodioline mussels was the spreading centers of the northeast Pacific, but deep-sea dives using DSV Alvin on the Endeavor segment of the Juan de Fuca Ridge (47°56N 129°06W; ∼2,200 m depth) in August 1999 yielded the only recorded bathymodioline mytilids from these northeastern Pacific vents. One specimen in good condition was evaluated for its relatedness to other deep-sea bathymodioline mussels and for the occurrence of chemoautotrophic and/or methanotrophic symbionts in the gills. Phylogenetic analyses of the host cytochrome oxidase I gene show this mussel shares evolutionary alliances with hydrothermal vent and cold seep mussels from the genus Bathymodiolus, and is distinct from other known species of deep-sea bathymodiolines, suggesting this mussel is a newly discovered species. Ultrastructural analyses of gill tissue revealed the presence of coccoid bacteria that lacked the intracellular membranes observed in methanotrophic symbionts. The bacteria may be extracellular but poor condition of the fixed tissue complicated conclusions regarding symbiont location. A single gamma-proteobacterial 16S rRNA sequence was amplified from gill tissue and directly sequenced from gill tissue. This sequence clusters with other mussel chemoautotrophic symbiont 16S rRNA sequences, which suggests a chemoautotrophic, rather than methanotrophic, symbiosis in this mussel. Stable carbon (δ13C = −26.6%) and nitrogen (δ15N = +5.19%) isotope ratios were also consistent with those reported for other chemoautotroph-mussel symbioses. Despite the apparent rarity of these mussels at the Juan de Fuca vent sites, this finding extends the range of the bathymodioline mussels to all hydrothermal vent biogeographic provinces studied to date.


Gill Tissue Cold Seep Biogeographic Province Fuca Ridge Symbiont Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the captain and crews of the R/V Atlantis, as well as the pilots and crews of the DSV Alvin for their invaluable assistance. We are grateful to two anonymous reviewers for helpful and constructive comments on the manuscript. Special thanks to A. Bates and L. Kerr for TEM assistance. Special thanks are also due the REVEL teachers Ruth Cruz and Michelle Williams for discovering the mussel specimen described here. We gratefully acknowledge support from the National Science Foundation (NSF-OCE OCE-9633105 to CRF), the NOAA’s Undersea Research Program through the West Coast and Polar Regions National Undersea Research Center at the University of Alaska at Fairbanks (UAF-WA # 98-06 to CMC), and the NIH-Genetics Training Grant (ZPM).


  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  2. Baco-Taylor AR (2002) Food-wed structure, succession, and phylogenetics on deep-sea whale skeletons. PhD dissertation, University of HawaiiGoogle Scholar
  3. Barry JP, Buck KR, Kochevar RK, Nelson DC, Fujiwara Y, Goffredi SK, Hashimoto J (2002) Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan. Invert Biol 121:47–54CrossRefGoogle Scholar
  4. Bates A, Harmer TL, Cavanaugh CM (2005) Episymbiotic gill bacteria of a hot vent gastropod are a novel gamma Proteobacterial phylotype. (in preparation)Google Scholar
  5. Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302:58–61CrossRefGoogle Scholar
  6. Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–348CrossRefGoogle Scholar
  7. Cavanaugh CM, Wirsen C, Jannasch HJ (1992) Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge. Appl Environ Microbiol 58:3799–3803PubMedPubMedCentralGoogle Scholar
  8. Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441Google Scholar
  9. Childress JJ, Fisher CR, Brooks JM, Kennicutt MC II, Bidigare R, Anderson AE (1986) A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308CrossRefGoogle Scholar
  10. de Burgh ME, Singla CL (1984) Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent. Mar Biol 84:1–6CrossRefGoogle Scholar
  11. Deming JW, Reysenbach AL, Macko SA, Smith CR (1997) Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: bone-colonizing bacteria and invertebrate endosymbionts. Microsc Res Tech 37:162–170CrossRefGoogle Scholar
  12. Distel DL, Cavanaugh CM (1994) Independent phylogenetic origin of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938CrossRefGoogle Scholar
  13. Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510CrossRefGoogle Scholar
  14. Distel D, Baco A, Morrill W, Cavanaugh C, Smith C (2000) Do mussels take wooden steps to deep-sea vents? Nature 403:725–726CrossRefGoogle Scholar
  15. Dubilier N, Windoffer R, Giere O (1998) Ultrastructure and stable carbon isotope composition of the hydrothermal vent mussels Bathymodiolus brevior and B. sp. affinis brevior from the North Fiji Basin, western Pacific. Mar Ecol Prog Ser 165:187–193CrossRefGoogle Scholar
  16. Fiala-Médioni A, Métivier C, Herry A, Le Pennec M (1986) Ultrastructure of the gill of the hydrothermal vent mytilid Bathymodiolus sp. Mar Biol 92:65–72CrossRefGoogle Scholar
  17. Fiala-Médioni A, Le Pennec M (1987) Trophic structural adaptations in relation with the bacterial association of bivalve molluscs from hydrothermal vents and subduction zones. Symbiosis 4:63–74Google Scholar
  18. Fiala-Médioni A, Felbeck H, Childress J, Fisher C, Vetter R (1990) Lysosomic resorption of bacterial symbionts in deep-sea bivalves. In: Nardon P, Gianinazzi-Pearson V, Grenier A, Margulis L, Smith D (eds) Endocytobiology IV. Institut National de la Recerche Agronomique, Paris, pp 335–338Google Scholar
  19. Fiala-Médioni A, Michalski J-C, Jollès J, Alonso C, Montreuil J (1994) Lysosomic and lysozyme activities in the gill of bivalves from deep hydrothermal vents. C R Acad Sci Paris Sci Vie 317:239–244Google Scholar
  20. Fiala-Médioni A, McKiness Z, Dando P, Boulegue J, Mariotti A, Alayse-Danet A, Robinson J, Cavanaugh C (2002) Ultrastructural, biochemical, and immunological characterization of two populations of a new species of mytilid mussel, Bathymodiolus azoricus,from the Mid-Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043CrossRefGoogle Scholar
  21. Fisher CR (1993) Oxidation of methane by deep-sea mytilids in the Gulf of Mexico. In: Oremland R (eds) Biogeochemistry of global change: radioactively active trace gases. Chapman and Hall Inc, New York, pp 606–618CrossRefGoogle Scholar
  22. Fisher CR (1995) Toward an appreciation of hydrothermal vent animals: their environment, physiological ecology, and tissue stable isotope values. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, Washington, pp 297–316Google Scholar
  23. Fisher CR, Childress JJ (1992) Organic carbon transfer from methanotropic symbionts to the host hydrocarbon-seep mussel. Symbiosis 12:221–235Google Scholar
  24. Fisher CR, Childress JJ, Oremland RS, Bidigare RR (1987) The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar Biol 96:59–71CrossRefGoogle Scholar
  25. Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA Jr (1993) The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. P S Z N I Mar Ecol 14:277–289CrossRefGoogle Scholar
  26. Fisher CR, Childress JJ, Macko SA, Brooks JM (1994) Nutritional interactions in Galapagos Rift hydrothermal vent communities: inferences from stable carbon and nitrogen isotope analyses. Mar Ecol Prog Ser 103:45–55CrossRefGoogle Scholar
  27. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  28. Fujiwara Y, Takai K, Uematsu K, Tsuchida S, Hunt JC, Hashimoto J (2000) Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels: influence on host distributions. Mar Ecol Prog Ser 208:147–155CrossRefGoogle Scholar
  29. Fujiwara Y, Kato C, Masui N, Fujikura K, Kojima S (2001) Dual symbiosis in the cold-seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific. Mar Ecol Prog Ser 214:151–159CrossRefGoogle Scholar
  30. Govenar B, Bergquist DC, Urcuyo A, Eckner JT, Fisher CR (2002) Epifaunal assemblages from a Juan de Fuca sulfide edifice: structurally different and functionally similar. Cah Biol Mar 43:247–252Google Scholar
  31. Gustafson R, Turner R, Lutz R, Vrijenhoek R (1998) A new genus and five new species of mussels (Bivalvia, Mytilidae) from deep-sea sulfide/hydrocarbon seeps in the Gulf of Mexico. Malacologia 40:63–112Google Scholar
  32. Kochevar RE, Childress JJ, Fisher CR, Minnich E (1992) The methane mussel: roles of symbiont and host in the metabolic utilization of methane. Mar Biol 112:389–401CrossRefGoogle Scholar
  33. Lane DL, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S rRNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82:6955–6959CrossRefGoogle Scholar
  34. Le Pennec M (1984) Anatomie, structure et ultrastructure de la branchie d′un Mytilidae des sites hydrothermaux du Pacifique oriental. Oceanol Acta 7:517–523Google Scholar
  35. Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Macko SA, McDuff RE (1993) Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364:45–47CrossRefGoogle Scholar
  36. McKiness ZP, Cavanaugh CM (2005) The ubiquitous mussel: Bathymodiolus aff. brevior symbiosis discovered at the Central Indian Ridge hydrothermal vents. Mar Ecol Prog Ser 295:183–190CrossRefGoogle Scholar
  37. Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl D (ed) Microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, pp 125–167Google Scholar
  38. Nelson DC, Hagan KD, Edwards DB (1995) The gill symbiont of the hydrothermal vent mussel Bathymodiolus thermophilusis a psychrophilic, chemoautotrophic, sulfur bacterium. Mar Biol 121:487–495CrossRefGoogle Scholar
  39. Nelson K, Fisher CR (2000) Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. Symbiosis 28:1–15Google Scholar
  40. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  41. Robinson JJ, Polz MF, Fiala-Medioni A, Cavanaugh CM (1998) Physiological and immunological evidence for two distinct C-1-utilizing pathways in Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), a dual endosymbiotic mussel from the Mid-Atlantic Ridge. Mar Biol 132:625–633CrossRefGoogle Scholar
  42. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II 45:517–567CrossRefGoogle Scholar
  43. Southward EC (1986) Gill symbionts in Thyasirids and other bivalve molluscs. J Mar Biol Ass UK 66:889–914CrossRefGoogle Scholar
  44. Streams ME, Fisher CR, Fiala-Medioni A (1997) Methanotrophic symbiont location and fate of carbon incorporated from methane in a hydrocarbon seep mussel. Mar Biol 129:465–476CrossRefGoogle Scholar
  45. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, SunderlandGoogle Scholar
  46. Trask JL, Van Dover CL (1999) Site-specific and ontogenetic variations in nutrition of mussels (Bathymodiolussp.) from the Lucky Strike hydrothermal vent field, Mid-Atlantic Ridge. Limnol Oceanogr 44:334–343CrossRefGoogle Scholar
  47. Tsurumi M (2003) Diversity at hydrothermal vents. Glob Ecol Biogeogr 12:181–190CrossRefGoogle Scholar
  48. Tunnicliffe V (1988) Biogeography and evolution of hydrothermal-vent fauna in the eastern Pacific Ocean. Proc R Soc Lond B 233:347–366CrossRefGoogle Scholar
  49. Tunnicliffe V, MacArthur AG, McHugh D (1998) A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv Mar Biol 34:353–442CrossRefGoogle Scholar
  50. Van Dover C (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, PrincetonGoogle Scholar
  51. Van Dover CL (2002) Trophic relationships among invertebrates at the Kairei hydrothermal vent field (Central Indian Ridge). Mar Biol 141:761–772CrossRefGoogle Scholar
  52. Van Dover CL, Fry B (1989) Stable isotopic compositions of hydrothermal vent organisms. Mar Biol 102:257–263CrossRefGoogle Scholar
  53. Van Dover CL, Humphris SE, Fornari D, Cavanaugh CM, Collier R, Goffredi SK, Hashimoto J, Lilley M, Reysenbach AL, Shank TM, Von Damm KL, Banta A, Gallant RM, Götz D, Green D, Hall J, Harmer TL, Hurtado LA, Johnson P, McKiness ZP, Meredith C, Olson E, Pan IL, Turnipseed M, Won Y, Young CR III, Vrijenhoek RC (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818–822CrossRefGoogle Scholar
  54. Van Dover C, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257CrossRefGoogle Scholar
  55. Von Cosel R, Comtet T, Krylova E (1999) Bathymodiolus (Bivalvia: Mytilidae) from the hydrothermal vents on the Azores Triple Junction and the Logatchev hydrothermal field, Mid-Atlantic Ridge. Veliger 42:218–248Google Scholar
  56. Von Cosel R, Metivier B (1994) Three new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents in the Lau and North Fiji Basin, Western Pacific, and the Snake Pit area, Mid-Atlantic Ridge. Veliger 37:374–392Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Z. P. McKiness
    • 1
    • 3
  • E. R. McMullin
    • 2
    • 4
  • C. R. Fisher
    • 2
  • C. M. Cavanaugh
    • 1
    Email author
  1. 1.Department of Organismic and Evolutionary Biology, The Biological LaboratoriesHarvard UniversityCambridgeUSA
  2. 2.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.National Animal Disease CenterAgricultural Research Service, USDAAmesUSA
  4. 4.College of Marine StudiesUniversity of DelawareLewesUSA

Personalised recommendations