Advertisement

Marine Biology

, Volume 147, Issue 6, pp 1353–1365 | Cite as

Phylogeography of the calanoid copepods Calanus helgolandicus and C. euxinus suggests Pleistocene divergences between Atlantic, Mediterranean, and Black Sea populations

  • L. N. PapadopoulosEmail author
  • K. T. C. A. Peijnenburg
  • P. C. Luttikhuizen
Research Article

Abstract

Molecular systematic analyses of marine taxa are crucial for recording ocean biodiversity, so too are elucidation of the history of population divergence and the dynamics of speciation. In this paper we present the joined phylogeography of the calanoid copepod Calanus helgolandicus (Claus 1863) from the North East (NE) Atlantic and the Adriatic Sea and the closely related C. euxinus (Hulsemann 1991) from the Black Sea based on sequences of a mitochondrial Cytochrome Oxidase subunit I (COI) fragment. Coalescent-based Bayesian methods and minimum spanning networks are used to reconstruct the history of population divergence. Our results reveal that copepod populations from all three basins share a great number of haplotypes and demonstrate a close genetic affinity of C. euxinus with C. helgolandicus. The data do not support significant genetic structuring among samples within seas. Coalescent analyses suggest divergences between NE Atlantic, Mediterranean, and Black Sea populations dating back to the middle Pleistocene, with the NE Atlantic–Mediterranean divergence being the earliest and the Mediterranean–Black Sea divergence the most recent. These middle Pleistocene dates are much older than the estimated dates of colonisation of the Mediterranean and Black Seas based on paleoclimatic scenarios. Our results do not rule out that the assumed colonisations took place but they indicate that the populations colonising the Mediterranean and the Black Sea were already, and have since remained, diverged. The chaetognath Sagitta setosa, which has a comparable distribution pattern and feeds upon the copepods, provides a unique opportunity to compare phylogeographic patterns and distinguish among alternative hypotheses. The dates produced in this paper are in agreement with those estimated elsewhere for S. setosa. We propose that a great deal of the genetic make-up of marine planktonic populations comprises divergences that date back to long before the last glacial maximum. We consider questions on the taxonomic status of C. euxinus to remain open. However, its high genetic affinity to the C. helgolandicus calls for further investigation.

Keywords

North East Minimum Span Network CYTB Sequence Coalescent Analysis Mitochondrial Cytochrome Oxidase Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to M. Baars and S. Oosterhuis for inviting and assisting LNP on board the NIOZ research vessel ‘Pelagia’ during the ‘Plume& Bloom 6’ Cruise, August 2002. We are indebted to the following persons for either mediating, arranging, collecting, or providing samples: M. Genner, N. Halliday, R. Harris, A. Ianora, S. Jonasdottir, T. Kiørboe, A. Pierrot-Bults, V. Tirelli, and J. Titelman. We are also grateful to D. Elvers for sending us the initial set of primers for CYTB, B. Voetdijk and P. Kuperus for supporting lab work, J. van Arkel for helping us with figures, M. Genner, J. Kouwenberg, and J. Todd for their input on the manuscript. We acknowledge the research group of S. Menken at the University of Amsterdam for financial and logistic support. The laboratory procedures described in this paper comply with all laws and regulations of The Netherlands.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. Angel MV (1979) Zoogeography of the Atlantic Ocean. In: Van der Spoel S, Pierrot-Bults AC (eds) Zoogeography and diversity of plankton. Bunge, Utrecht, The NetherlandsGoogle Scholar
  3. Arbogast BS, Edwards SV, Wakeley J, Beerli P, Slowinski JB (2002) Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu Rev Ecol Syst 33:707–740CrossRefGoogle Scholar
  4. Bargelloni L, Alarcon JA, Alvarez MC, Penzo E, Magoulas A, Reis C, Patarnello T (2003) Discord in the family Sparidae (Teleostei): divergent phylogeographical patterns across the Atlantic-Mediterranean divide. J Evol Biol 16:1149–1158CrossRefPubMedGoogle Scholar
  5. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261CrossRefPubMedGoogle Scholar
  6. Besiktepe S (2001) Diel vertical distribution, and herbivory of copepods in the south-western part of the Black Sea. J Mar Syst 28:281–301CrossRefGoogle Scholar
  7. Besiktepe S, Telli M (2004) Egg production and growth rates of Calanus euxinus (Copepoda) in the Black Sea. J Plankton Res 26:571–578CrossRefGoogle Scholar
  8. Besiktepe S, Kideys AE, Unsal M (1998) In situ grazing pressure and diel vertical migration of female Calanus euxinus in the Black Sea. Hydrobiologia 363:323–332CrossRefGoogle Scholar
  9. Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheim van Dillen PME, Van der Noordaa J (1990) Rapid and simple method for purification of nucleic-acids. J Clin Microbiol 28:495–503PubMedGoogle Scholar
  10. Borsa P, Blanquer A, Berrebi P (1997) Genetic structure of the flounders Platichthys flesus and P. stellatus at different geographic scales. Mar Biol 129:233–246CrossRefGoogle Scholar
  11. Bradford JM (1988) Review of the taxonomy of the Calanidae (Copepoda) and the imits to the genus Calanus. Hydrobiologia 167:73–81CrossRefGoogle Scholar
  12. Brunner PC, Douglas MR, Osinov A, Wilson CC, Bernatchez L (2001) Holarctic phylogeography of Arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55:573–586PubMedCrossRefGoogle Scholar
  13. Bucklin A, Wiebe PH (1998) Low mitochondrial diversity and small effective population sizes of the copepods Calanus finmarchicus and Nannocalanus minor: Possible impact of climatic variation during recent glaciation. J Hered 89:383–392CrossRefPubMedGoogle Scholar
  14. Bucklin A, Frost BW, Kocher TD (1992) DNA sequence variation of the mitochondrial 16S rRNA in Calanus (Copepoda: Calanoida): intraspecific and interspecific patterns. Mol Mar Biol Biotech 1:397–407Google Scholar
  15. Bucklin A, Frost BW, Kocher TD (1995) Molecular systematics of 6 Calanus and 3 Metridia species (Calanoida, Copepoda). Mar Biol 121:655–664CrossRefGoogle Scholar
  16. Bucklin A, Guarnieri M, Hill RS, Bentley AM, Kaartvedt S (1999) Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401:239–254CrossRefGoogle Scholar
  17. Bucklin A, Frost BW, Bradford-Grieve J, Allen LD, Copley NJ (2003) Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol 142:333–343Google Scholar
  18. Conover RJ (1988) Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiologia 167:127–142CrossRefGoogle Scholar
  19. Dawson AG (1992) Ice age earth. Late quartenary geology and climate. Routledge, LondonGoogle Scholar
  20. Denton GH, Hughes TJ (1981) The last great ice age sheets. Wiley, New YorkGoogle Scholar
  21. Duran S, Pascual M, Estoup A, Turon X (2004) Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Mol Ecol 13:511–522CrossRefPubMedGoogle Scholar
  22. Ekman S (1968) Zoogeography of the sea. Sidgwick and Jackson, LondonGoogle Scholar
  23. Elian L (1960) Observations systematiques et biologiques sur les chaetognathes qui se trouvent dans les eaux roumaines de la mer noire. Rapp Comm int Mer Medit 15:359–366Google Scholar
  24. Fleminger A, Hulsemann K (1977) Geographical range and taxonomic divergence in North Atlantic Calanus (C. helgolandicus, C. finmarchicus and C. glacialis). Mar Biol 40:233–248CrossRefGoogle Scholar
  25. Fleminger A, Hulsemann K (1987) Geographical variation in Calanus helgolandicus s.l. (Copepoda, Calanoida) and evidence of recent speciation of the Black Sea population. Biol Oceanogr 5:43–81Google Scholar
  26. Folmer O, Black M, Hoen W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome-it c-oxidase subunit I form diverse metazoan inverterbrates. Mol Mar Biol Biotech 3:294–299PubMedGoogle Scholar
  27. Frost BW (1971) Taxonomic status of Calanus finmarchicus and C. glacialis (Copepoda), with special reference to adult males. J Fish res Bd Can 28:23–30Google Scholar
  28. Frost BW (1974) Calanus marshallae, a new species of calanoid copepods closely related to the sibling species C. finmarchicus and C. glacialis. Mar Biol 26:77–99CrossRefGoogle Scholar
  29. Furnestin M-L (1979) Aspects of the zoogeography of the Mediterranean plankton. In: Van der Spoel S, Pierrot-Bults AC (eds) Zoogeography and diversity of plankton. Bunge, Utrecht, The NetherlandsGoogle Scholar
  30. Gaudy R (1985) Features and peculiarities of zooplankton communities from the western Mediterranean. In: Moraitou-Apostolopoulou M, Kiortsis V (eds) Mediterranean marine ecosystems. Plenum, New York, pp 279–301Google Scholar
  31. Goetze E (2003) Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae. Proc R Soc of Lond B Bio 270:2321–2331CrossRefGoogle Scholar
  32. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  33. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276CrossRefGoogle Scholar
  34. Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760CrossRefPubMedGoogle Scholar
  35. Hill RS, Allen LD, Bucklin A (2001) Multiplexed species-specific PCR protocol to discriminate four N. Atlantic Calanus species, with an mtCOI gene tree for ten Calanus species. Mar Biol 139:279–287CrossRefGoogle Scholar
  36. Hudson RR (1983) Properties of a neutral allele model with intragenic recombination. Theor Popul Biol 23:183–201CrossRefPubMedGoogle Scholar
  37. Hudson RR, Turelli M (2003) Stochasticity overrules the “three-times rule”: genetic drift, genetic draft, and coalescence times for nuclear loci versus mitochondrial DNA. Evolution 57:182–190PubMedGoogle Scholar
  38. Hulsemann K (1991) Calanus euxinus, new name, a replacement name for Calanus ponticus Karavaev, 1894 (Copepoda, Calanoida). P Biol Soc Wash 104:620–621Google Scholar
  39. Kideys AE, Kovalev AV, Shulman G, Gordina A, Bingel F (2000) A review of zooplankton investigations of the Black Sea over the last decade. J Mar Syst 24:355–371CrossRefGoogle Scholar
  40. Kingman JFC (1982a) The coalescent. Stoch Proc Appl 13:235–248CrossRefGoogle Scholar
  41. Kingman JFC (1982b) On the genealogy of large populations. J Appl Probab 19A:27–43CrossRefGoogle Scholar
  42. Knowlton N (1993) Sibling species in the sea. Ann Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  43. Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90CrossRefGoogle Scholar
  44. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B Biol 265:2257–2263CrossRefGoogle Scholar
  45. Knowlton N, Weigt LA, Solórzano LA, Mills DK, Bermingham E (1993) Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the Isthmus of Panama. Science 260:1629–1632PubMedCrossRefGoogle Scholar
  46. Kovalev AV, Mazzocchi MG, Siokou-Frangou I, Kideys AE (2001) Zooplankton of the Black Sea and the Eastern Mediterranean: similarities and dissimilarities. Mediterr Mar Sci 2(1):69–77Google Scholar
  47. Ladoukakis ED, Saavedra C, Magoulas A, Zouros E (2002) Mitochondrial DNA variation in a species with two mitochondrial genomes: the case of Mytilus galloprovincialis from the Atlantic, the Mediterranean and the Black Sea. Mol Ecol 11:755–769CrossRefPubMedGoogle Scholar
  48. Lass S, Spaak P (2003) Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491:221–239CrossRefGoogle Scholar
  49. Lee CE (2000) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution 54:2014–2027PubMedCrossRefGoogle Scholar
  50. Lee CE, Frost BW (2002) Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia 480:111–128CrossRefGoogle Scholar
  51. Lindeque PK, Harris RP, Jones MB, Smerdon GR (1999) Simple molecular method to distinguish the identity of Calanus species (Copepoda: Calanoida) at any developmental stage. Mar Biol 133:91–96CrossRefGoogle Scholar
  52. Lindeque PK, Harris RP, Jones MB, Smerdon GR (2004) Distribution of Calanus spp. as determined using a genetic identification system. Sci Mar 68:121–128CrossRefGoogle Scholar
  53. Luttikhuizen PC, Drent J, Baker AJ (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12:2215–2229CrossRefPubMedGoogle Scholar
  54. Magoulas A, Tsimenidis N, Zouros E (1996) Mitochondrial DNA phylogeny and the reconstruction of the population history of species: the case of the European anchovy (Engraulis encrasicolus). Mol Biol Evol 13:178–190PubMedGoogle Scholar
  55. Mauchline J (1998) The biology of calanoid copepods. Academic, San Diego, CAGoogle Scholar
  56. McIntyre A, Kipp NG, Bé AWH, Cowley T, Kellogg T, Gardner JV, Prell W, Ruddimann WF (1976) Glacial North Atlantic 18000 years ago: a CLIMAP reconstruction. In: Cline RM, Hayes JD (eds) Geol Soc Am Mem 145:43–74Google Scholar
  57. Moraitou-Apostolopoulou M (1985) The zooplankton communities of the eastern Mediterranean (Levantine Basin, Aegean Sea); influence of man-made factors. In: Moraitou-Apostolopoulou M, Kiortsis V (eds) Mediterranean marine ecosystems. Plenum, New York, pp 303–329Google Scholar
  58. Mutlu E (2003) Acoustical identification of the concentration layer of a copepod species, Calanus euxinus. Mar Biol 142:517–523Google Scholar
  59. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, USAGoogle Scholar
  60. Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896PubMedGoogle Scholar
  61. Øresland V (1987) Feeding of the chaetognaths Sagitta elegans and S. setosa at different seasons in Gullmarsfjorden, Sweden. Mar Ecol Prog Ser 39:69–79CrossRefGoogle Scholar
  62. Pannacciulli FG, Bishop JDD, Hawkins SJ (1997) Genetic structure of populations of two species of Chthamalus (Crustacea: Cirripedia) in the north-east Atlantic and Mediterranean. Mar Biol 128:73–82CrossRefGoogle Scholar
  63. Pearre SJ (1980) Feeding by chaetognatha: the relation of prey size to predator size in several species. Mar Ecol Prog Ser 3:125–134CrossRefGoogle Scholar
  64. Peijnenburg KTCA, Pierrot-Bults AC (2004) Quantitative morphological variation in Sagitta setosa Muller, 1847 (Chaetognatha) and two closely related taxa. Contrib Zool 74:305–315Google Scholar
  65. Peijnenburg KTCA, Breeuwer HJAJ, Pierrot-Bults AC, Menken SBJ (2004) Phylogeography of the planktonic chaetognath Sagitta setosa reveals isolation in European seas. Evolution 58:1472–1487PubMedGoogle Scholar
  66. Pfenninger M, Posada D (2002) Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): Fragmentation, corridor migration, and secondary contact. Evolution 56:1776–1788PubMedGoogle Scholar
  67. Pfenninger M, Posada D, Magnin F (2003) Evidence for survival of Pleistocene climatic changes in Northern refugia by the land snail Trochoidea geyeri (Soos 1926) (Helicellinae, Stylommatophora). Bmc Evol Biol 3(1):8CrossRefPubMedGoogle Scholar
  68. Quesada H, Beynon CM, Skibinski DOF (1995) A mitochondrial-DNA discontinuity in the mussel Mytilus galloprovincialis Lmk - Pleistocene vicariance biogeography and secondary intergradation. Mol Biol and Evol 12:521–524Google Scholar
  69. Riginos C, McDonald JH (2003) Positive selection on an acrosomal sperm protein, M7 lysin, in three species of the mussel genus Mytilus. Mol Biol Evol 20:200–207CrossRefPubMedGoogle Scholar
  70. Rocha-Olivares A, Fleeger JW, Foltz DW (2001) Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol 18:1088–1102PubMedGoogle Scholar
  71. Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3:380–390CrossRefPubMedGoogle Scholar
  72. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: Methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  73. Ryan WBF, Pitman III WC, Major CO, Shimkus K, Moskalenko V, Jones GA, Dimitrov P, Gorür N, Sakinç M, Yüce H (1997) An abrupt drowning of the Black Sea shelf. Mar Geol 138:119–126CrossRefGoogle Scholar
  74. Schizas NV, Street GT, Coull BC, Chandler GT, Quattro JM (1999) Molecular population structure of the marine benthic copepod Microarthridion littorale along the southeastern and Gulf coasts of the USA. Mar Biol 135:399–405CrossRefGoogle Scholar
  75. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.001: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  76. Siokou-Frangou I, Shiganova T, Christou ED, Kamburska L, Gubanova A, Konsulov A, Musaeva E, Skryabin V, Khoroshilov V (2004) Mesozooplankton communities in the Aegean and Black Seas: a comparative study. Mar Biol 144:1111–1126CrossRefGoogle Scholar
  77. Spivak ED, Schubart CD (2003) Species status in question: A morphometric and molecular comparison of Cyrtograpsus affinis and C. altimanus (Decapoda, Brachyura, Varunidae). J Crustacean Biol 23:212–222CrossRefGoogle Scholar
  78. Svetlichny LS, Hubareva ES, Erkan F, Gucu AC (2000) Physiological and behavioral aspects of Calanus euxinus females (Copepoda: Calanoida) during vertical migration across temperature and oxygen gradients. Mar Biol 137:963–971CrossRefGoogle Scholar
  79. Svetlichny LS, Gubareva ES, Arashkevich EG (2002) Effect of oxygen concentration on energy metabolism in the migrating and diapausing copepods Calanus euxinus in the Black Sea. Oceanology 42:670–676Google Scholar
  80. Svitoch AA, Selivanov AO, Yanina TA (2000) The Pont-Caspian and Mediterranean basins in the Pleistocene (paleogeography and correlation). Oceanology 40:868–881Google Scholar
  81. Swofford DL (1998) PAUP*: phylogenetic analysis using parsimony (* and other methods), Version 4.0b8. Sinauer, SunderlandGoogle Scholar
  82. Tajima F (1983) Evolutionary relationships of DNA sequences in finite populations. Genetics 105:597–601Google Scholar
  83. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  84. Tajima F (1993) Measurement of DNA polymorphism. In: Takahata N, Clark AG (eds) Mechanisms of molecular evolution. Introduction to molecular paleopopulation biology. Japan Scientific Societies Press, Sinauer Associates Inc., Tokyo, Sunderland, MA, pp 37–59Google Scholar
  85. Tavaré S (1984) Line-of-decent and genealogical processes, and their applications in genetic population models. Theor Popul Biol 26:119–164CrossRefPubMedGoogle Scholar
  86. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W-improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  87. Tolmazin D (1985) Changing coastal oceanography of the Black Sea II: Mediterranean effluent. Prog Oceanogr 15:277–316CrossRefGoogle Scholar
  88. Van der Spoel S, Heyman RP (1983) A comparative atlas of zooplankton, biological patterns in the oceans. Springer, Berlin Heidelberg New YorkGoogle Scholar
  89. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373CrossRefPubMedGoogle Scholar
  90. Yuneva TV, Svetlichny LS, Yunev OA, Romanova ZA, Kideys AE, Bingel F, Uysal Z, Yilmaz A, Shulman GE (1999) Nutritional condition of female Calanus euxinus from cyclonic and anticyclonic regions of the Black Sea. Mar Ecol Prog Ser 189:195–204CrossRefGoogle Scholar
  91. Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Cuzin-Roudy J, Buchholz F, Patarnello T (2000) Genetic differentiation in a pelagic crustacean (Meganyctiphanes norvegica: Euphasiacea) from the North East Atlantic and the Mediterannean. Sea. Mar Biol 136:191–199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • L. N. Papadopoulos
    • 1
    Email author
  • K. T. C. A. Peijnenburg
    • 2
  • P. C. Luttikhuizen
    • 2
  1. 1.Institute for Biodiversity and Ecosystem Dynamics/Zoological Museum Amsterdam, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Institute for Biodiversity and Ecosystem Dynamics, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations