Skip to main content
Log in

Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Large discoidal soritid foraminiferans (Soritinae) are abundant in coral reef ecosystems. As with the many cnidarian invertebrates that inhabit these systems, they also depend on symbiotic dinoflagellates (Symbiodinium) for their growth and survival. Several particular Symbiodinium sub-genera or clades inhabit these soritids. One of these groups, referred to as clade C, dominates corals and their relatives throughout the tropical Indo-Pacific. In contrast, the distributions of Symbiodinium spp. from clades A, B, and C are more evenly apportioned across Caribbean invertebrate communities. To explore the possibility that a similar biogeographic break exists in the symbionts harbored by soritids, we surveyed the Symbiodinium spp. from the soritid genus Sorites, collected from the Pacific and Caribbean coasts of Panama as well as from Florida. Characterization of Symbiodinium obtained from foraminiferal and cnidarian samples was conducted using restriction fragment length polymorphism and phylogenetic analyses of the nuclear internal transcribed spacer region 2 (ITS 2) and a portion of the large subunit ribosomal DNA sequences. A distinctive biogeographic break between the kinds of symbionts found in Sorites from the East Pacific and Caribbean was clearly evident. Differences between cnidarian and foraminferan symbioses in each ocean may be explained by the subjection of Caribbean communities to severer environmental conditions during the early Quarternary. Caribbean Sorites spp. harbored symbionts described from clade F (specifically sub-clade Fr4) and clade H (formally referred to as Fr1), while Sorites spp. from the eastern Pacific were dominated by a single Symbiodinium haplotype in clade C. An ITS 2 phylogeny determined that most clade C “types” recovered from Indo-Pacific soritids form a monophyletic sub-lineage with other clade C symbionts typically found in Pacific corals from the genus Porites. The existence of multiple Symbiodinium lineages at various taxonomic levels associated specifically with soritids indicates that symbioses with these hosts are important in driving Symbiodinium spp. evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a, b
Fig. 3a, b

Similar content being viewed by others

References

  • Baker AC (2003) Flexibility and specificity of coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Google Scholar 

  • Baker AC, Rowan R (1997) Diversity of symbiotic dinoflagellates (zooxanthellae) in scleractinian corals of the Caribbean and eastern Pacific. In: Lessios HA, MacIntyre IG (eds) Proc 8th Int Coral Reef Symp, vol 2. Smithsonian Tropical Research Institute, Balboa, Panama, pp 1301–1306

  • Beu AG (2001) Gradual Miocene to Pleistocene uplift of the Central American Isthmus: evidence from tropical American tonnoidean gastropods. J Paleontol 75:706–720

    Google Scholar 

  • Budd AF, Johnson KG, Stemann TA (1996) Plio-pleistocene turnover and extinctions in the Caribbean reef-coral fauna. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 205–233

  • Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062

    Article  CAS  Google Scholar 

  • Chang SS, Prezelin BB, Trench RK (1983) Mechanisms of photoadaptation in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. Mar Biol 76:219–229

    CAS  Google Scholar 

  • Cheetham AH, Jackson JBC (1996) Speciation, extinction and the decline of arborescent growth in Neogene and Quaternary cheilostome Bryozoa of tropical America. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 205–233

  • Coates AG, Obando JA (1996) The geological evolution of the Central American Isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 21–56

  • Collins LS, Budd AF, Coates AG (1996) Earliest evolution associated with the closure of the Tropical American Seaway. Proc Natl Acad Sci USA 93:6069–6072

    Article  CAS  PubMed  Google Scholar 

  • Farris JS (1970) Methods for computing Wagner trees. Syst Zool 19:83–92

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthellae: taxonomy, life cycle, and morphology. J Protozool 9:45–52

    Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Glynn PW, Ault JS (2000) A biogeographic analysis and review of the Far Eastern Pacific coral reef region. Coral Reefs 19:1–23

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hallock P (1985) Why are larger foraminifera large? Paleobiology 11:195–208

    Google Scholar 

  • Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457–471

    Google Scholar 

  • Hallock P (1988) Interoceanic differences in foraminifera with symbiotic algae: a result of nutrient supplies? In: Choat JH, et al (eds) Proc 6th Int Coral Reef Symp, vol 3. Symposium Executive Committee, Townsville, pp 251–255

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Google Scholar 

  • Haug GH, Tiedmann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673–676

    Article  CAS  Google Scholar 

  • Haynes JR (1981) Foraminifera. MacMillan, London

  • Heinze C, Crowley TJ (1997) Sedimentary response to ocean gateway circulation changes. Paleoceanography 12:742–754

    Article  Google Scholar 

  • Hewitt CL, Campbell ML, Thresher RE, Martin RB, Boyd S, Cohen BF, Currie DR, Gomon MF, Keough MJ, Lewis JA, Lockett MM, Mays N, McArthur MA, O’Hara TD, Poore GCB, Ross DF, Storey MJ, Watson JE, Wilson RS (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144:183–202

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: a program for the Bayesian inference of phylogeny. Available from http://morphbank.ebc.uu.se/mrbayes/manual.pdf

  • Jackson JBC, Jung P, Coates A, Collins LS (1993) Diversity and extinction of tropical American mollusks and emergence of the Isthmus of Panama. Science 260:1624–1626

    Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC, Loh WK, Van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs (in press)

  • Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93

    CAS  PubMed  Google Scholar 

  • Langer MR, Hottinger L (2000) Biogeography of selected “larger” foraminifera. Micropaleontology 46:105–126

    Google Scholar 

  • Lee JJ, McEnery ME, Kahn EG, Schuster FL (1979) Symbiosis and the evolution of larger foraminifera. Micropaleontology 25:118–140

    Google Scholar 

  • Lobban CS, Schefter M, Simpson AGB, Pochon X, Pawlowski J, Foissner W (2002) Maristentor dinoferus n.gen. n.sp., a giant heterotrich ciliate (Spirotrichea: Heterotrichida) with zooxanthellae, from coral reefs on Guam, Mariana Islands. Mar Biol 140:411–423

    Article  Google Scholar 

  • Loeblich AR, Tappan H (1987) Foraminiferal genera and their classification. Van Nostrand Reinhold, New York

  • Muscatine L, Porter JW (1977) Reef corals—mutualistic symbiosis adapted to nutrient-poor environments. Bioscience 27:454–460

    Google Scholar 

  • Pawlowski J, Holzmann M, Fahrni JF, Pochon X, Lee JJ (2001) Molecular identification of algal endosymbionts in large miliolid foraminifera. 2. Dinoflagellates. J Eukaryot Microbiol 48:368–373

    CAS  PubMed  Google Scholar 

  • Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490–1498

    CAS  Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Proctor VW, Malone CR (1965) Further evidence of the passive dispersal of small aquatic organisms via the intestinal tract of birds. Ecology 46:728–729

    Google Scholar 

  • Renema W, Hoeksema BW, van Hinte JE (2001) Larger benthic foraminifera and their distribution patterns on the Spermonde shelf, South Sulawesi. Zool Verh Leiden 334:115–149

    Google Scholar 

  • Richardson SL (2001) Endosymbiont change as a key innovation in the adaptive radiation of Soritida (Foraminifera). Paleobiology 27:262–289

    Google Scholar 

  • Rodriguez-Lanetty M (2003) Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA. Mol Phylogenet Evol 28:152–168

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Lanetty M, Cha HR, Song JI (2003a) Genetic diversity of symbiotic dinoflagellates associated with anthozoans from Korean waters. In: Proc 9th Coral Reef Symp, vol 1. International Coral Reef Society, Bali, Indonesia, pp 163–166

  • Rodriguez-Lanetty M, Chang SJ, Song JI (2003b) Specificity of two temperate dinoflagellate–anthozoan associations from the north-western Pacific Ocean. Mar Biol 143:1193–1199

    Article  Google Scholar 

  • Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal–algal symbiosis. Science 251:1348–1351

    CAS  Google Scholar 

  • Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. J Phycol 37:900–912

    Article  CAS  Google Scholar 

  • Santos SR, Taylor DJ, Kinzie RA, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111

    Article  CAS  PubMed  Google Scholar 

  • Savage AM, Goodson MS, Visram S, Trapido-Rosenthal H, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Mar Ecol Prog Ser 244:17–26

    Google Scholar 

  • Schoenberg DA, Trench RK (1980a) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of S. microadriaticum. Proc R Soc Lond B Biol Sci 207:405–427

    CAS  Google Scholar 

  • Schoenberg DA, Trench RK (1980b) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in S. microadriaticum. Proc R Soc Lond B Biol Sci 207:429–444

    Google Scholar 

  • Schoenberg DA, Trench RK (1980c) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of S. microadriaticum. Proc R Soc Lond B Biol Sci 207:445–460

    Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland, Mass., USA

  • Taylor DL (1974) Symbiotic marine algae: taxonomy and biological fitness. In: Vernberg WB (ed) Symbiosis in the sea. Columbia University Press, New York, pp 245–262

  • Thompson T, Higgins D, Gibson J (1994) CLUSTAL W. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Trench RK (1993) Microalgal–invertebrate symbiosis—a review. Endocyt Cell Res 9:135–175

    Google Scholar 

  • Wilcox TP (1998) Large subunit ribosomal RNA systematics of symbiotic dinoflagellates: morphology does not recapitulate phylogeny. Mol Phylogenet Evol 10:436–448

    Article  CAS  PubMed  Google Scholar 

  • Woodring WP (1966) The Panama landbridge as a sea barrier. Proc Am Philos Soc 110:425–433

    Google Scholar 

Download references

Acknowledgements

We would like to thank B. Fitt for the use of his laboratory at Key Largo, the staff and scientists of the Smithsonian Tropical Research Institute and the Keys Marine Laboratory for technical support, the Florida Keys National Marine Sanctuary and Republic of Panama for permission to collect and export samples from Florida and Panama, respectively. We also would like to thank the staff and scientists of the Lizard Island Research Station (LIRS), GBR, Australia. We are grateful to N. Kuntz, J. Wolstenholmes, and Pamela Hallock for assisting in the sampling at Bocas del Toro, Lizard Island, and Florida Keys, respectively. We thank L. Zaninetti for her support, J. Fahrni for technical assistance, J. Montoya and B. Stadelmann for valuable comments and A. Balajadia for the manuscript preparation. This study was supported by grants from the G. and A. Claraz Foundation (3100-49513.99), Swiss National Science Foundation (3100A0-100415), and American National Science Foundation (0137007). Experiments comply with the laws of the countries in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Pochon.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pochon, X., LaJeunesse, T.C. & Pawlowski, J. Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Marine Biology 146, 17–27 (2004). https://doi.org/10.1007/s00227-004-1427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-004-1427-2

Keywords

Navigation