Skip to main content
Log in

Geographic covariation of chemical quality of the host alga Fucus vesiculosus with fitness of the herbivorous isopod Idotea baltica

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Environmental and/or genetic among-site variation in plant quality may influence growth and fecundity of specialized herbivores inhabiting a particular site. Such variation is important as it generates spatial variation in selection for traits related to plant–herbivore interaction. Littoral macroalgae are known to respond plastically to environmental variation by modifying their chemistry or morphology. We studied geographic variation in phlorotannin, nitrogen, protein, and sugar (fucose, mannitol, and melibiose) concentrations of the brown alga Fucus vesiculosus at 12 sites separated by 0.5 to 40 km in the naturally fragmented Archipelago Sea in the northern Baltic Sea. By this regional variation in algal chemistry we attempted to explain among-population variation in size and fecundity of the crustacean herbivore Idotea baltica. We observed high spatial variation in all the measured chemical characteristics of F. vesiculosus, as well as in female size and the number of eggs produced by the herbivores. Spatial variation in nitrogen or protein contents of the alga did not explain the variation of herbivore traits. However, egg size positively covaried with spatial variation in the concentration of mannitol, the major storage carbohydrate of the alga. Such a positive relationship may arise if I. baltica can utilize the nutritive value of a mannitol-rich diet thereby being better able to provision the developing eggs with energy-rich metabolites. Unexpectedly, the concentration of phlorotannins, secondary metabolites having a putative role in defense against herbivory, positively covaried with the size of the herbivore. Among-population variation in host plant chemistry and covariation of that with herbivore growth and reproduction imply that herbivores respond to the local quality of their host plants, and that geographical structuring of populations has to be taken into account in studies of plant–herbivore interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–f
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold TM, Targett NM (2003) To grow and defend: lack of tradeoffs for brown algal phlorotannins. Oikos 100:406–408

    Google Scholar 

  • Arnold TM, Tanner CE, Haych WI (1995) Phenotypic variation in polyphenolic content of the tropical brown alga Lobophora variegata as a function of nitrogen availability. Mar Ecol Prog Ser 123:177–183

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chapman ARO (1995) Functional ecology of fucoid algae: twenty-three years of progress. Phycologia 34:132

    Google Scholar 

  • Chapman ARO, Graigie JS (1978) Seasonal growth in Laminaria longicruris: relations with reserve carbohydrate storage and production. Mar Biol 46:209–213

    CAS  Google Scholar 

  • Cole RG, Haggitt T (2001) Dietary preferences of Evechinus chloroticus and the persistence of the fucalean macroalga Carpophyllum flexuosum on coralline-dominated areas in northeastern New Zealand. In: Barker MF (ed) Echinoderms 2000. Swets and Zeitlinger, Lisse, pp 425–430

  • Coyer JA, Peters AF, Stam WT, Olsen JL (2003) Post-ice age recolonization and differentiation of Fucus serratus L. (Phaeophyceae; Fucaceae) populations in northern Europe. Mol Ecol 12:1817–1829

    Article  CAS  PubMed  Google Scholar 

  • Cronin G, Hay ME (1996a) Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 77:93–106

    CAS  Google Scholar 

  • Cronin G, Hay ME (1996b) Induction of seaweed chemical defenses by amphipod grazing. Ecology 77:2287–2301

    Google Scholar 

  • Davis EM (1988) Protein assays: a review of common techniques. Am Biotechnol Lab 6:28–37

    CAS  Google Scholar 

  • Deal MS, Hay ME, Wilson D, Fenical W (2003) Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus. Oecologia 136:107–114

    Article  PubMed  Google Scholar 

  • Einum S, Fleming IA (2000) Highly fecund mothers sacrifice offspring survival to maximize fitness. Nature 405:565–567

    Article  CAS  PubMed  Google Scholar 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56:345–369

    Article  CAS  PubMed  Google Scholar 

  • Gómez I, Weykam G, Wiencke C (1998) Photosynthetic metabolism and major organic compounds in the marine brown alga Desmarestia menziensii from King George Island (Antarctica). Aquat Bot 60:105–118

    Article  Google Scholar 

  • Haahtela I (1978) Morphology as evidence of maturity in isopod Crustacea, as exemplified by Mesidotea entomon (L.). Ann Zool Fenn 15:186–190

    Google Scholar 

  • Hammerström K, Dethier MN, Duggins DO (1998) Rapid phlorotannin induction and relaxation in five Washington kelps. Mar Ecol Prog Ser 165:293–305

    CAS  Google Scholar 

  • Hartnoll RG (2001) Growth in Crustacea: twenty years on. Hydrobiologia 449:111–122

    Article  Google Scholar 

  • Hemmi A, Jormalainen V (2002) Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology 83:1052–1064

    Google Scholar 

  • Hemmi A, Jormalainen V (2004) Genetic and environmental variation in performance of a marine isopod: effects of eutrophication. Oecologia (in press)

    Google Scholar 

  • Hemmi A, Honkanen T, Jormalainen V (2004) Inducible resistance to herbivory in Fucus vesiculosus—duration, spreading and variation with nutrient availability. Mar Ecol Prog Ser (in press)

  • Honkanen T, Jormalainen V, Hemmi A, Mäkinen A, Heikkilä N (2001) Feeding and growth of the isopod Idotea baltica on the brown alga Fucus vesiculosus: roles of inter-population and within-plant variation in plant quality. Ecoscience 9:332–338

    Google Scholar 

  • Honkanen T, Jormalainen V, Hemmi A, Mäkinen A, Heikkilä N (2002) Feeding and growth of the isopod Idotea baltica on the brown alga Fucus vesiculosus: roles of inter-population and within-plant variation in plant quality. Ecoscience 9: 332–338

    Google Scholar 

  • Ilvessalo H, Tuomi J (1989) Nutrient availability and accumulation of phenolic compounds in the brown alga Fucus vesiculosus. Mar Biol 101:115–119

    CAS  Google Scholar 

  • Jensen A (1956) Preliminary investigations of the carbohydrates of Laminaria digitata and Fucus serratus. Rep Norway Inst Seaweed Res 10:11

    Google Scholar 

  • Jormalainen V, Honkanen T (2001) Multiple cues for phenotypic plasticity in phlorotannin production of the bladder wrack Fucus vesiculosus. Phycologia 40:59–60

    Google Scholar 

  • Jormalainen V, Merilaita S, Tuomi J (1995) Differential predation on sexes affects colour polymorphism of the isopod Idotea baltica (Pallas). Biol J Linn Soc 55:45–68

    Google Scholar 

  • Jormalainen V, Honkanen T, Heikkilä N (2001) Feeding preferences and performance of a marine isopod on seaweed hosts: cost of habitat specialization. Mar Ecol Prog Ser 220:219–230

    Google Scholar 

  • Kalvas A, Kautsky L (1993) Geographical variation in Fucus vesiculosus morphology in the Baltic and North Seas. Eur J Phycol 28:85–91

    Google Scholar 

  • Kingsolver JG, Pfennig DW, Servedio MR (2002) Migration, local adaptation and the evolution of plasticity. Trends Ecol Evol 17540–17541

  • Kornfeldt RA (1982) Relation between nitrogen and phosphorus content of macroalgae and the waters of northern Öresund. Bot Mar 25:197–201

    CAS  Google Scholar 

  • Lehvo A, Bäck S, Kiirikki M (2001) Growth of Fucus vesiculosus L. (Phaeophyta) in the northern Baltic proper: energy and nitrogen storage in seasonal environment. Bot Mar 44:345–350

    Google Scholar 

  • Lucas PW, Turner IM, Dominy NJ, Yamashita N (2000) Mechanical defenses to herbivory. Ann Bot 86:913–920

    Article  Google Scholar 

  • Lüning K, Schmitz K, Willenbrink J (1973) CO2-fixation and translocation in benthic marine algae III. Rates and ecological significance of translocation in Laminaria hyperborea and L. saccharina. Mar Biol 23:275–281

    Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Google Scholar 

  • Panov VE, McQueen DJ (1998) Effects of temperature on individual growth rate and body size of a freshwater amphipod. Can J Zool 76:1107–1116

    Article  Google Scholar 

  • Paul VJ, Cruz-Rivera E, Thacker RW (2001) Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, Fla., pp 227–265

  • Pavia H, Åberg P (1996) Spatial variation in polyphenolic content of Ascophyllum nodosum (Fucales, Phaeophyta). Hydrobiologia 326/327:199–203

  • Pavia H, Toth GB (2000a) Influence of light and nitrogen on the phlorotannin content of the brown seaweeds Ascophyllum nodosum and Fucus vesiculosus. Hydrobiologia 440:299–305

    CAS  Google Scholar 

  • Pavia H, Toth G (2000b) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225

    Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Åberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146

    CAS  Google Scholar 

  • Pavia H, Toth GB, Lindgren A, Åberg P (2003) Intraspecific variation in the phlorotannin content of the brown alga Ascophyllum nodosum. Phycologia 42:378–383

    Google Scholar 

  • Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on phlorotannins in the north Atlantic brown alga Fucus vesiculosus. Mar Ecol Prog Ser 138:209–217

    CAS  Google Scholar 

  • Poore AGB, Steinberg PD (2001) Host-plant adaptation in an herbivorous marine amphipod: genetic potential not realized in field populations. Evolution 55:68–80

    CAS  PubMed  Google Scholar 

  • Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress, Bristol, UK, pp 129–241

  • Rice EL, Kenchington TJ, Chapman ARO (1985) Intraspecific geographic-morphological variation patterns in Fucus distichus and F. evanescens. Mar Biol 88:207–215

    Google Scholar 

  • Roff DA (1992) The evolution of life histories—theory and analysis. Chapmann & Hall, New York

  • Ruuskanen A (2000) Ecological responses of Fucus vesiculosus L. along environmental gradients in the northern Baltic Sea. PhD thesis, University of Helsinki, Finland

  • Salemaa H (1979) Ecology of Idotea spp. (Isopoda) in the northern Baltic. Ophelia 18:133–150

    Google Scholar 

  • SAS Institute (1990) SAS/STAT user’s guide: statistics, vers 8.01. SAS Institute, Cary, N.C.

  • Schink B, Philipp B, Muller J (2000) Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23

    Article  CAS  PubMed  Google Scholar 

  • Shuster SM, Guthrie EE (1999) Effects of temperature and food availability on adult body length in natural and laboratory populations of Paracerceis sculpta (Holmes), a Gulf of California isopod. J Exp Mar Biol Ecol 233:269–284

    Article  Google Scholar 

  • Sotka EE, Hay ME (2002) Geographic variation among herbivore populations in tolerance for a chemically rich seaweed. Ecology 83:2721–2735

    Google Scholar 

  • Steinberg PD (1988) The effects of quantitative and qualitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores. J Exp Mar Biol Ecol 120:221–237

    Article  Google Scholar 

  • Steinberg PD (1989) Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia 78:374–383

    Google Scholar 

  • Steinberg PD, Van Altena I (1992) Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol Monogr 62:189–222

    Google Scholar 

  • Stern JL, Hagerman AE, Steinberg PD, Mason PK (1996) Phlorotannin-protein interactions. J Chem Ecol 22:1877–1899

    CAS  Google Scholar 

  • Suomela J, Ossipov V, Haukioja E (1995) Variation among and within mountain birch trees in foliage phenols, carbohydrates, and amino acids, and in growth of Epirrita autumnata larvae. J Chem Ecol 21:1421–1446

    Google Scholar 

  • Swanson AK, Druehl LD (2002) Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot 73:241–253

    CAS  Google Scholar 

  • Targett N, Boettcher, AA, Targett TE, Vrolijk NH (1995) Tropical marine herbivore assimilation on phenolic-rich plants. Oecologia 103:170–179

    Google Scholar 

  • Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205

    CAS  Google Scholar 

  • Targett NM, Arnold TM (2001) Effects of secondary metabolites on digestion in marine herbivores. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, Fla., pp 391–412

  • Targett NM, Coen LD, Boettcher AA, Tanner CE (1992) Biogeographic comparisons of marine algal phenolics: evidence against a latitudinal trend. Oecologia 89:464–470

    Google Scholar 

  • Taylor RB, Lindquist N, Kubanek J, Hay ME (2003) Intraspecific variation in palatability and defensive chemistry of brown seaweeds: effects on herbivore fitness. Oecologia 136:412–423

    Article  PubMed  Google Scholar 

  • Thompson JN (1999a) Specific hypotheses on the geographical mosaic theory of coevolution. Am Nat 153:S1–S14

    Article  Google Scholar 

  • Thompson JN (1999b) Coevolution and escalation: are ongoing coevolutionary meanderings important? Am Nat 153:S92–S93

    Article  Google Scholar 

  • Van Alstyne KL (1988) Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69:655–663

    Google Scholar 

  • Van Alstyne KL (1995) The comparison of three methods for quantifying brown algal polyphenolic compounds. J Chem Ecol 21:45–58

    Google Scholar 

  • Van Alstyne KL, Paul VJ (1990) The biogeography of polyphenolic compounds in marine macroalgae: temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia 84:158–163

    Google Scholar 

  • Van Alstyne KL, McCarthy JJ III, Hustead CL, Duggins DO (1999) Geographic variation in polyphenolic levels of northeastern Pacific kelps and rockweeds. Mar Biol 133:371–379

    Article  Google Scholar 

  • Van Alstyne KL, Duggins DO, Dethier MN (2001) Spatial patterns in macroalgal chemical defenses. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, Fla., pp 301–324

  • Waterman PG, Mole S (eds) (1994) Analysis of phenolic plant metabolites. Blackwell Scientific, Oxford, UK

  • Winter FC, Estes JA (1992) Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum Ruprecht (Phaeophyta: Laminariales) on feeding rate and growth in the red abalone Haliotus rufenscens Swainson. J Exp Mar Biol Ecol 155:263–277

    CAS  Google Scholar 

  • Yates JL, Peckol P (1993) Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74:1757–1766

    Google Scholar 

  • Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77:455–493

    Article  PubMed  Google Scholar 

  • Zimmer M, Danko JP, Pennings SC, Danford AR, Ziegler A, Uglow RF, Carefoot TH (2001) Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Mar Biol 138:955–963

    Article  Google Scholar 

  • Zimmer M, Danko JP, Pennings SC, Danford AR, Ziegler A, Uglow RF, Carefoot TH (2002) Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Mar Biol 140:1207–1213

    Article  CAS  Google Scholar 

  • Zvyagintseva TN, Shevchenko NM, Chizhov AO, Krupnova TN, Sundukova EV, Isakov VV (2003) Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J Exp Mar Biol Ecol 294:1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Archipelago Research Institute, University of Turku for providing the facilities and Janne Eränen for assisting in the field and laboratory. Riitta Koivikko conducted the analyses of phlorotannins and sugars, and Katariina Yli-Hätälä the analyses of proteins. This study was financed by the Academy of Finland (#44086, #53832 and BIREME program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hemmi.

Additional information

Communicated by M. Kühl, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmi, A., Jormalainen, V. Geographic covariation of chemical quality of the host alga Fucus vesiculosus with fitness of the herbivorous isopod Idotea baltica . Marine Biology 145, 759–768 (2004). https://doi.org/10.1007/s00227-004-1360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-004-1360-4

Keywords

Navigation