Skip to main content
Log in

Limited effects of Antarctic ozone depletion on sea urchin development

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The sea urchin, Sterechinus neumayeri, has a circumpolar distribution and is an abundant species in benthic communities of the Antarctic. Reproduction occurs during austral spring, when ozone concentrations over the past 25 years have been reduced by 50% or more, potentially exposing the planktonic embryos and larvae to elevated levels of UVB. During spring of 1996, cultures of S. neumayeri embryos incubated under ambient and partitioned sunlight (minus UVB) at static depths between 0 and 7 m were analyzed for DNA damage [cyclobutane pyrimidine dimers (CPDs)] and morphological abnormalities. At 0-m and 1-m depths, nearly 100% of embryos developed abnormally, even under UVB-shielded conditions where little or no DNA damage accumulated. At depths >3 m, reduced or no abnormality was evident and DNA damage was negligible. Although UVB contributed to 0–65% of solar-induced abnormalities, the mean contribution was 11±17% and UVB was not primarily responsible for observed defects in urchin development. Moreover, developmental responses were not linearly related to ambient UVB gradients as might be expected, but are better characterized relative to threshold levels of total UVB exposure. Accumulated exposures of ≤25 kJ m−2 ambient UVB caused minimal DNA damage and allowed normal embryological development to proceed. Higher UVB exposures (especially ≥80 kJ m−2) precluded normal development. An ancillary threshold limit of 17 CPDs mb−1 has been identified as the level of DNA damage that proscribes abnormal development. While higher wavelengths of UVA and visible light are not affected by ozone concentration and do not initiate significant CPD DNA damage, they did interfere significantly with the embryological development of S. neumayeri. It is concluded that exposure to increased UVB during recent Antarctic ozone-depletion cycles probably has only a small degree of impact relative to the magnitude of other solar effects on the developmental success of Sterechinus embryos, or compared to spawning seasons before ozone depletion (i.e., years prior to 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5A, B
Fig. 6
Fig. 7
Fig. 8A, B
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aarseth KA, Schram TA (2002) Susceptibility to ultraviolet radiation in Calanus finmarchicus and Lepeophtheirus salmonis and the adaptive value of external filtering (Crustacea: Copepoda). J Plankton Res 24:661–680

    Article  CAS  Google Scholar 

  • Aas P, Lyons MM, Pledger R, Mitchell DL, Jeffrey WH (1996) Inhibition of bacterial activities by solar radiation in nearshore waters and the Gulf of Mexico. Aquat Microb Ecol 11:229–238

    Google Scholar 

  • Aboul-Ela IA (1958) Effects of ultraviolet radiation on oysters. Nature 181:1013

    Google Scholar 

  • Adams NL, Shick JM (1996) Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis. Photochem Photobiol 64:149–158

    CAS  Google Scholar 

  • Adams NL, Shick JM (2001) Mycosporine-like amino acids prevent UVB-induced abnormalities during early development of the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 138:267–280

    Article  CAS  Google Scholar 

  • Akimoto Y, Shiroya T (1986) UV-induced morphological abnormality and abnormal protein pattern, and their photoreversion in sea-urchin embryos (Hemicentrotus pulcherrimus). J Radiat Res 27:26–26

    Google Scholar 

  • Akimoto Y, Shiroya T, Egami N (1983) Abnormal morphogenesis of sea urchin embryo induced by UV partial irradiation given at cleavage stage. J Radiat Res 24:197–202

    CAS  PubMed  Google Scholar 

  • Amemiya S, Yonemura S, Kinoshita S, Shiroya T (1986) Biphasic stage sensitivity to UV suppression of gastrulation in sea urchin embryos. Cell Differ 18:45–49

    Article  CAS  PubMed  Google Scholar 

  • Angerer LM, Angerer RC (2000) Animal-vegetal axis patterning mechanisms in the early sea urchin embryo. Dev Biol 218:1–12

    Article  PubMed  Google Scholar 

  • Ankley GT, Tietge JE, Holcombe GW, De Foe DL, Diamond SA, Jensen KM, Degitz SJ (2000) Effects of laboratory ultraviolet radiation and natural sunlight on survival and development of Rana pipiens. Can J Zool 78:1092–1100

    Article  Google Scholar 

  • Applegate LA, Ley RD (1988) Ultraviolet-induced lethality and repair of pyrimidine dimers in fish embryos. Mutat Res 198:85–92

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR (1994) Impact of ozone depletion on phytoplankton growth in the Southern Ocean: large-scale spatial and temporal variability. Mar Ecol Prog Ser 114:1–12

    CAS  Google Scholar 

  • Baker A (1995) Solar UV-A inhibition of planula larvae in the reef-building coral Pocillopora damicornis. In: Gulko D, Jokiel PL (eds) Ultraviolet radiation and coral reefs. Technical report 41, Sea Grant Publication UNIHI-SEAGRANT-CR-95-03. Hawaii Institute of Marine Biology, University of Hawaii, pp 149–163

  • Barile PJ, Stoner AW, Young CM (1994) Phototaxis and vertical migration of the queen conch (Strombus gigas linne) veliger larvae. J Exp Mar Biol Ecol 183:147–162

    Article  Google Scholar 

  • Bass EL, Sistrun SN (1997) Effect of UVA radiation on development and hatching success in Oryzias latipes, the Japanese medaka. Bull Environ Contam Toxicol 59:537–542

    Article  CAS  PubMed  Google Scholar 

  • Béland F, Browman HI, Rodriguez CA, St-Pierre J-F (1999) Effect of solar ultraviolet radiation (280–400 nm) on the eggs and larvae of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 56:1058–1067

    Article  Google Scholar 

  • Blaustein AR, Kiesecker JM, Chivers DP, Anthony RG (1997) Ambient UV-B radiation causes deformities in amphibian embryos. Proc Natl Acad Sci USA 94:13735–13737

    CAS  PubMed  Google Scholar 

  • Blaustein AR, Hays JB, Hoffman PD, Chivers DP, Kiesecker JM, Leonard WP, Marco A, Olson DH, Reaser JK, Anthony RG (1999) DNA repair and resistance to UV-B radiation in western spotted frogs. Ecol Appl 9:1100–1105

    Google Scholar 

  • Blondel MO, Favre A (1988) tRNAPhe and tRNAPro are near-ultraviolet molecular targets triggering the growth delay effect. Biochem Biophys Res Commun 150:979–986

    CAS  PubMed  Google Scholar 

  • Boelen P, de Boer MK, Kraay GW, Veldhuis MJW, Buma AGJ (2000) UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic Ocean. Mar Ecol Prog Ser 193:1–9

    Google Scholar 

  • Booth CR, Luca TB, Morrow JB, Weiler CS, Penhale PA (1994) United States National Science Foundation’s polar network for monitoring ultraviolet radiation. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation and biological research in Antarctica. American Geophysical Union, Washington, D.C., pp 17–37

  • Bosch I, Beauchamp KA, Steele ME, Pearse JS (1987) Development, metamorphosis and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri. Biol Bull 173:126–135

    Google Scholar 

  • Bothwell ML, Sherbot DMJ, Pollock CM (1994) Ecosystem response to solar ultraviolet-B radiation: influence of trophic level interactions. Science 265:97–100

    CAS  Google Scholar 

  • Boucher NP, Prézelin BB (1996) Spectral modeling of UV inhibition of in situ Antarctic primary production using a field-derived biological weighting function. Photochem Photobiol 64:407–418

    CAS  Google Scholar 

  • Brey T, Gutt J (1991) The genus Sterechinus (Echinodermata, Echinoidea) on the Weddell Sea shelf and slope (Antarctica)—distribution, abundance and biomass. Polar Biol 11:227–232

    Google Scholar 

  • Browman HI (2003) Assessing the impacts of solar ultraviolet radiation on the early life stages of crustacean zooplankton and ichthyoplankton in marine coastal systems. Estuaries 26:30–39

    Google Scholar 

  • Browman HI, Rodriguez CA, Béland F, Cullen JJ, Davis RF, Kouwenberg JHM, Kuhn PS, McArthur B, Runge JA, St-Pierre J-F, Vetter RD (2000) Impact of ultraviolet radiation on marine crustacean zooplankton and ichthyoplankton: a synthesis of results from the estuary and Gulf of St. Lawrence, Canada. Mar Ecol Prog Ser 199:293–311

    Google Scholar 

  • Bruggeman DJ, Bantle JA, Goad C (1998) Linking teratogenesis, growth, and DNA photodamage to artificial ultraviolet B radiation in Xenopus laevis larvae. Environ Toxicol Chem 17:2114–2121

    CAS  Google Scholar 

  • Buma AGJ, Vanhannen EJ, Roza L, Veldhuis MJW, Gieskes WWC (1995) Monitoring ultraviolet-B-induced DNA damage in individual diatom cells by immunofluorescent thymine dimer detection. J Phycol 31:314–321

    CAS  Google Scholar 

  • Buma AG, Engelen AH, Gieskes WWC (1997) Wavelength-dependent induction of thymine dimers and growth rate reduction in the marine diatom Cyclotella sp. exposed to ultraviolet radiation. Mar Ecol Prog Ser 153:91–97

    CAS  Google Scholar 

  • Buma AGJ, de Boer MK, Boelen P (2001) Depth distributions of DNA damage in Antarctic marine phyto- and bacterioplankton exposed to summertime UV radiation. J Phycol 37:200–208

    Article  CAS  Google Scholar 

  • Calkins J (ed) (1982) The role of solar ultraviolet radiation in marine ecosystems. Plenum, N.Y.

  • CIE (1999) Standardization of the terms UV-A1, UV-A2 and UV-B. CIE (International Commission on Illumination) collection in photobiology and photochemistry number 134-1999. An abstract is available at http://www.cie.co.at. Cited 17 June 2003

  • Cordi B, Donkin ME, Peloquin J, Price DN, Depledge MH (2001) The influence of UV-B radiation on the reproductive cells of the intertidal macroalga, Enteromorpha intestinalis. Aquat Toxicol 56:1–11

    Article  CAS  PubMed  Google Scholar 

  • Damkaer DM, Dey DB, Heron GA (1981) Dose/dose-rate responses of shrimp larvae to UV-B radiation. Oecologia 48:178–182

    Google Scholar 

  • Davidson EH, Cameron RA, Ransick A (1998) Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 125:3269–3290

    PubMed  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh C-H, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Schilstra MJ, Clarke PJC, Rust AG, Pan Z, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev Biol 246:162–190

    Article  Google Scholar 

  • De Mora SJ, Demers S, Vernet M (eds) (2000) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge

  • Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216

    Google Scholar 

  • Downes A, Blunt TP (1877) Researches on the effect of light upon bacteria and other organisms. Proc R Soc Lond 26:488–500

    Google Scholar 

  • Dring M, Makarov V, Schoschina E, Lorenz M, Luening K (1996) Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (Phaeophyta). Mar Biol 126:183–191

    CAS  Google Scholar 

  • Ejima Y, Ikenaga M, Shiroya T (1984) Action spectrum for photoreactivation of ultraviolet-induced morphological abnormalities in sea urchin eggs. Photochem Photobiol 40:461–464

    CAS  PubMed  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210

    CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. American Society of Microbiology Press, Washington, D.C.

  • Gleason D, Wellington GM (1995) Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar Biol 123:693–703

    Google Scholar 

  • Häder D-P, Kumar HD, Smith RC, Worrest RC (2003) Aquatic ecosystems: effects of solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci 2:39–50

    Article  PubMed  Google Scholar 

  • Harm W (1980) Biological effects of ultraviolet radiation. Cambridge University Press, Cambridge

  • Hartmann DL, Wallace JM, Limpasuvan V, Thompson DWJ, Holton JR (2000) Can ozone depletion and global warming interact to produce rapid climate change? Proc Natl Acad Sci USA 97:1412–1417

    Article  CAS  PubMed  Google Scholar 

  • Heasman J (1997) Patterning the Xenopus blastula. Development 124:4179–4191

    CAS  PubMed  Google Scholar 

  • Helbling EW, Marguet ER, Villafañe VE, Holm-Hansen O (1995) Bacterioplankton viability in Antarctic waters as affected by solar ultraviolet radiation. Mar Ecol Prog Ser 126:293–298

    Google Scholar 

  • Hunter JR, Taylor JH, Moser G (1979) Effect of ultraviolet irradiation on eggs and larvae of the northern anchovy, Engraulis mordax, and the Pacific mackerel, Scomber japonicus, during the embryonic stage. Photochem Photobiol 29:325–338

    CAS  PubMed  Google Scholar 

  • Huot Y, Jeffrey WH, Davis RF, Cullen JJ (2000) Damage to DNA in bacterioplankton: a model of damage by ultraviolet radiation and its repair as influenced by vertical mixing. Photochem Photobiol 72:62–74

    CAS  PubMed  Google Scholar 

  • Huovinen PS, Oikari AOJ, Soimasuo MR, Cherr GN (2000) Impact of UV radiation on the early development of the giant kelp (Macrocystis pyrifera) gametophytes. Photochem Photobiol 72:308–313

    CAS  PubMed  Google Scholar 

  • Jeffery WR (1990) Ultraviolet irradiation during ooplasmic segregation prevents gastrulation, sensory cell induction, and axis formation in the ascidian embryo. Dev Biol 140:388–400

    CAS  PubMed  Google Scholar 

  • Jeffrey WH, Aas P, Lyons MM, Coffin RB, Pledger RJ, Mitchell DL (1996a) Ambient solar radiation-induced photodamage in marine bacterioplankton. Photochem Photobiol 64:419–427

    CAS  Google Scholar 

  • Jeffrey WH, Pledger RJ, Aas P, Hager S, Coffin RB, Von Haven R, Mitchell DL (1996b) Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation. Mar Ecol Prog Ser 137:283–291

    CAS  Google Scholar 

  • Jeffrey WH, Miller RV, Mitchell DL (1997) Detection of ultraviolet radiation induced DNA damage in microbial communities of Gerlache Strait. Antarct J US 32:85–87

    Google Scholar 

  • Karanas JJ, Dyke HV, Worrest RC (1979) Midultraviolet (UV-B) sensitivity of Acartia clausii Giesbrecht (Copepoda). Limnol Oceanogr 24:1104–1116

    Google Scholar 

  • Karentz D (1994) Prevention of ultraviolet radiation damage in Antarctic marine invertebrates. In: Biggs RH, Joyner M (eds) Stratospheric ozone depletion/UVB radiation in the biosphere. Proceedings of NATO advanced research workshop. Springer, Berlin Heidelberg New York, pp 175–180

  • Karentz D (2001) Chemical defenses of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytonemin. In: McClintock J, Baker W (eds) Marine chemical ecology. CRC, Boca Raton, Florida, pp 481–520

  • Karentz D (2003) Environmental change in Antarctica: ecological impacts and responses. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 45–55

  • Karentz D, Bosch I (2001) Influence of ozone-related increases in ultraviolet radiation on Antarctic marine organisms. Am Zool 41:3–16

    CAS  Google Scholar 

  • Karentz D, Lutze LH (1990) Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol Oceanogr 35:549–561

    CAS  Google Scholar 

  • Karentz D, Cleaver JE, Mitchell DM (1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation exposure. J Phycol 27:326–341

    CAS  Google Scholar 

  • Karentz D, Bothwell ML, Coffin RB, Hanson A, Herndl GJ, Kilham SS, Lesser MP, Lindell M, Moeller RE, Morris DP, Neale PJ, Sanders RW, Weiler CS, Wetzel RG (1994) Impact of UVB radiation on pelagic freshwater ecosystems: report of working group on bacteria and phytoplankton. Arch Hydrobiol 43:31–69

    Google Scholar 

  • Karentz D, Dunlap WC, Bosch I (1997) Temporal and spatial occurrence of UV-absorbing mycosporine-like amino acids in tissues of the Antarctic sea urchin Sterechinus neumayeri during springtime ozone depletion. Mar Biol 129:343–353

    CAS  Google Scholar 

  • Kim GB, Lee RF, Mitchell DL (2000) Damage to grass shrimp (Palaemonetes pugio) embryo DNA by summer sunlight followed by DNA repair in the dark. Mar Biol 137:675–682

    Article  CAS  Google Scholar 

  • Kouwenberg JHM, Browman HI, Cullen JJ, Davis RF, St-Pierre J-F, Runge JA (1999a) Biological weighting of ultraviolet (280–400 nm) induced mortality in marine zooplankton and fish. I. Atlantic cod (Gadhus morhua) eggs. Mar Biol 134:269–284

    Article  Google Scholar 

  • Kouwenberg JHM, Browman HI, Runge JA, Cullen JJ, Davis RF, St-Pierre J-F (1999b) Biological weighting of ultraviolet (280–400 nm) induced mortality in marine zooplankton and fish. II. Calanus finmarchicus (Copepoda) eggs. Mar Biol 134:285–293

    Article  Google Scholar 

  • Kuhn PS, Browman HI, Davis RF, Cullen JJ, McArthur BL (2000) Modeling the effects of ultraviolet radiation on embryos of Calanus finmarchicus and Atlantic cod (Gadus morhua) in a mixing environment. Limnol Oceanogr 45:1797–1806

    Google Scholar 

  • Leech DM, Williamson CE (2000) Is tolerance to UV radiation in zooplankton related to body size, taxon, or lake transparency? Ecol Appl 10:1530–1540

    Google Scholar 

  • Malloy KD, Holman MA, Mitchell D, Detrich III HW (1997) Solar UVB-induced DNA damage and photoenzymatic DNA repair in Antarctic zooplankton. Proc Natl Acad Sci USA 94:1258–1263

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Marsh AG, Manahan DT (2000) Metabolic differences between “demersal” and “pelagic” development of the Antarctic sea urchin Sterechinus neumayeri. Mar Biol 137:215–221

    Article  Google Scholar 

  • Marshak A (1949) Recovery from ultra-violet light-induced delay in cleavage of Arabacia eggs by irradiation with visible light. Biol Bull 97:315–322

    Google Scholar 

  • Meador J, Jeffrey WH, Kase JP, Pakulski JD, Chiarello S, Mitchell DL (2001) Seasonal fluctuation of DNA photodamage in marine plankton assemblages at Palmer Station, Antarctica. Photochem Photobiol 75:266–271

    Google Scholar 

  • Mitchell DL (1996) Ultraviolet radiation damage to DNA. In: Meyers RA (ed) Encyclopedia of molecular biology and molecular medicine. Chernow, New York, pp 149–164

  • Mitchell DL (1999) Quantification of DNA photoproducts in mammalian cell DNA using radioimmunoassay. In: Henderson DS (ed) Methods in molecular biology DNA repair protocols. Humana, Totowa, N.J., pp 165–175

  • Mitchell DM, Hartman PS (1990) The regulation of DNA repair during development. Bioessays 12:74–79

    CAS  PubMed  Google Scholar 

  • Mitchell DL, Karentz D (1993) The induction and repair of DNA photodamage in the environment. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum, New York, pp 345–377

  • Montzka SA, Butler JH, Lock LT (1999) Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature 398:690–694

    Article  CAS  Google Scholar 

  • Neale PJ, Davis RF, Cullen JJ (1998) Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 392:585–589

    Article  CAS  Google Scholar 

  • Pawson DL (1994) Antarctic echinoderms: history, distribution, ecology, 1968–1993. In: David B, Guille A, Féral J-P, Roux M (eds) Proceedings of the eighth international echinoderm conference, Dijon, France. Balkema, Rotterdam, The Netherlands

  • Pizarro R, Orce LV (1988) Membrane damage and recovery associated with growth delay induced by near-UV radiation in Escherichia coli K-12. Photochem Photobiol 47:391–397

    CAS  PubMed  Google Scholar 

  • Poll WH van de, Hanelt D, Hoyer K, Buma AGJ, Breeman AM (2002) Ultraviolet-B-induced cyclobutane-pyrimidine dimer formation in Arctic marine macrophytes. Photochem Photobiol 76:493–500

    PubMed  Google Scholar 

  • Rodriguez CA, Browman HI, Runge JA, St-Pierre J-F (2000a) Impact of solar ultraviolet radiation on hatching of a marine copepod, Calanus finmarchicus. Mar Ecol Prog Ser 193:85–93

    Google Scholar 

  • Rodriguez CA, Browman HI, St-Pierre JF (2000b) High survival of neustonic zoea I larvae of American lobster Homarus americanus following short-term exposure to ultraviolet radiation (280–400 nm). Mar Ecol Prog Ser 193:305–309

    Google Scholar 

  • Rustad R (1975) Irradiation, chemical treatment and cleavage-cycle and cleavage pattern alteration. In: Czihak G (ed) The sea urchin embryo: biochemistry and morphogenesis. Springer, New York Berlin Heidelberg, pp 345–363

  • Ryter SW, Tyrrell RM (1998) Singlet molecular oxygen (1O2): a possible effector of eukaryotic gene expression. Free Radic Biol Med 24:1520–1534

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Taguchi S (2003) Influence of UVB radiation on hatching success of marine copepod Paracalanus parvus sp. l. J Exp Mar Biol Ecol 282:135–147

    Article  Google Scholar 

  • Setlow RB (1974) The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci USA 71:3363–3366

    CAS  PubMed  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protected functions in aquatic organisms. Annu Rev Physiol 64: 223–262

    Article  CAS  PubMed  Google Scholar 

  • Shima A, Setlow RB (1984) Survival and pyrimidine dimers in cultured fish cells exposed to concurrent sun lamp ultraviolet and photoreactivating radiations. Photochem Photobiol 39:49–56

    CAS  PubMed  Google Scholar 

  • Shindell DT, Rind D, Lonergan P (1998) Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392:589–592

    CAS  Google Scholar 

  • Shreeve RS, Peck LS (1995) Distribution of pelagic larvae of benthic marine invertebrates in the Bellinghausen Sea. Polar Biol 15:369–374

    Google Scholar 

  • Smith RC, Baker KS (1982) Assessment of the influence of enhanced UV-B on marine primary productivity. In: Calkins J (ed) The role of solar ultraviolet radiation in marine ecosystems. Plenum, N.Y., pp 509–537

  • Smith RC, Prézelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    CAS  PubMed  Google Scholar 

  • Sobolev I (2000) Effect of column ozone on the variability of biologically effective UV radiation at high southern latitudes. Photochem Photobiol 72:753–765

    CAS  PubMed  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316

    CAS  Google Scholar 

  • Stanwell-Smith D, Peck LS (1998) Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol Bull 194:44–52

    Google Scholar 

  • Stanwell-Smith D, Peck LS, Todd CD (1999) The distribution, abundance and seasonality of pelagic marine invertebrate larvae in the maritime Antarctic. Philos Trans R Soc Lond B 354:471–484

    Article  Google Scholar 

  • Steeger H-U, Wiemer M, Freitag JF, Paul RJ (1999) Vitality of plaice embryos (Pleuronectes platessa) at moderate UV-B exposure. J Sea Res 42:27–34

    Article  Google Scholar 

  • Strähle U, Jesuthasan S (1993) Ultraviolet irradiation impairs epiboly in zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly. Development 119:909–919

    PubMed  Google Scholar 

  • Toyoshima M, Takinami S, Hieda K, Furusawa Y, Negishi T (2002) The involvement of cell cycle checkpoint-mutations in the mutagenesis induced in Drosophila by a longer wavelength light band of solar UV. Photochem Photobiol Sci 1:178–183

    Article  CAS  PubMed  Google Scholar 

  • Tyrrell RM (1973) Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation. Photochem Photobiol 17:69–73

    CAS  PubMed  Google Scholar 

  • Tyrrell RM, Pidoux M (1987) Action spectra for human skin cells: estimates of the relative cytotoxicity of the middle ultraviolet, near ultraviolet, and violet regions of sunlight on epidermal keratinocytes. Cancer Res 47:1825–1829

    CAS  PubMed  Google Scholar 

  • Vernet M, Smith RC (1997) Effects of ultraviolet radiation on the pelagic Antarctic ecosystem. In: Häder D-P (ed) Effects of ozone depletion on aquatic ecosystems. Academic and Landes, Austin, Tex., pp 247–265

  • Vetter RD, Kurtzman A, Mori T (1999) Diel cycles of DNA damage and repair in eggs and larvae of northern anchovy, Engraulis mordax, exposed to solar ultraviolet radiation. Photochem Photobiol 69:27–33

    CAS  Google Scholar 

  • Visser PM, Snelder E, Kop AJ, Boelen P, Buma AGJ, Van Duyl FC (1999) Effects of UV radiation on DNA photodamage and production in bacterioplankton in the coastal Caribbean Sea. Aquat Microb Ecol 20:49–58

    Google Scholar 

  • Weiler CS, Penhale PA (eds) (1994) Ultraviolet radiation and biological research in Antarctica. American Geophysical Union, Washington, D.C.

  • Wells PH, Giese AC (1950) Photoreactivation of ultraviolet light injury in gametes of the sea urchin Strongylocentrotus purpuratus. Biol Bull 99:163–172

    PubMed  Google Scholar 

  • Williamson CE, Metzgar SL, Lovera PA, Moeller RE (1997) Solar ultraviolet radiation and the spawning habitat of yellow perch, Perca flavescens. Ecol Appl 7:1017–1023

    Google Scholar 

  • Williamson CE, Neale PJ, Grad G, De Lange HJ, Hargreaves BR (2001) Beneficial and detrimental effects of UV on aquatic organisms: implications of spectral variation. Ecol Appl 11:1843–1857

    Google Scholar 

  • Winckler K, Fidhiany L (1996a) Combined effects of constant sublethal UVA irradiation and elevated temperature on the survival and general metabolism of the convict-cichlid fish, Cichlasoma nigrofasciatum. Photochem Photobiol 63:487–491

    CAS  PubMed  Google Scholar 

  • Winckler K, Fidhiany L (1996b) Significant influence of UVA on the general metabolism in the growing cichlid fish, Cichlasoma nigrofasciatum. J Photochem Photobiol B 33:131–135

    Article  CAS  Google Scholar 

  • Young AR, Björn LO, Moan J, Nultsch W (eds) (1993) Environmental UV photobiology. Plenum, New York

  • Zagarese HE, Cravero W, Gonzalez P, Pedrozo F (1998) Copepod mortality induced by fluctuating levels of natural ultraviolet radiation simulating vertical water mixing. Limnol Oceanogr 43:169–174

    CAS  Google Scholar 

  • Zellmer ID (1998) The effect of solar UVA and UVB on subarctic Daphnia pulicaria in its natural habitat. Hydrobiologia 379:55–62

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank and express our appreciation to the people who contributed their expertise to this study. Ross Hein, Andy Opett and Greg Wardle were members of the Antarctic field team; Antarctic Support Associates (ASA, contractor to the U.S. Antarctic Program) personnel at Palmer Station provided logistics support for fieldwork; John Booth (ASA) compiled local weather data files; ozone data were made available by Richard McPeters (NASA Goddard Space Flight Center); accessing and processing light data from the NSF UV Monitoring Network were facilitated by Jim Ehramjian and Germar Bernhard (Biospherical Instruments); Victor Truong, Maureen Kennedy and Megan Lowery assisted with the DNA analyses; and reviewers provided helpful comments and suggestions for improvement of this manuscript. The U.S. National Science Foundation Office of Polar Programs awards number 9528241 to D.K. and number 9528089 to I.B. supported this research. All experiments conducted comply with the current regulations governing research in Antarctica and the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Karentz.

Additional information

Communicated by P.W. Sammarco, Chauvin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karentz, D., Bosch, I. & Mitchell, D.M. Limited effects of Antarctic ozone depletion on sea urchin development. Marine Biology 145, 277–292 (2004). https://doi.org/10.1007/s00227-004-1310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-004-1310-1

Keywords

Navigation