Skip to main content
Log in

Lack of mtDNA differentiation among hamlets (Hypoplectrus, Serranidae)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The hamlets are a group of vividly colored fish species of the Serranidae family differentiated only by the color pattern of the body. Although there are divergent views about hamlet taxonomy, experimental and field observations have shown a strong assortative mating, justifying a species status for the different color morphs. Here we analyze the level of evolutionary divergence among six species in respect of mitochondrial DNA, with a view to contrasting the pattern observed with color partitions and previous results obtained with isozymes. The estimated molecular distance among species was low and of the same magnitude as nucleotide diversity within species. Consequently, the net distance and hence the time of divergence between taxa was virtually zero in most comparisons. Although not critically tested, haplotype distribution showed no clear phylogeographic structure, and in many cases the most closely related haplotypes were found at different geographical locations. The absence of differentiated clades between species, based on mitochondrial DNA and isozyme analysis, may have one of two possible origins: a very recent differentiation of species or a lack of absolute barriers to gene flow. However, the available information is insufficient to determine the effect of one or the other, and may require supplementary information from other genes as well as experiments on hybrid fertility. Finally, based on some biological evidence, we suggest that self-fertilization may be an interesting phenomenon to be tested in Hypoplectrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Acero A, Garzón J (1994) Descripción de una nueva especie de Hypoplectrus (Pisces: Serranidae) del Caribe occidental y comentarios sobre las especies colombianas del género. An Inst Invest Mar Punta Betín 23:4–14

  • Albertson RC, Markert JA, Danley PD, Kocher TD (1999) Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc Natl Acad Sci USA 96:5107–5110

    Article  CAS  PubMed  Google Scholar 

  • Beebe W, Tee-Van J (1933) Field book of the shore fishes of Bermuda. Putnam, New York , pp 134–135

  • Breder ChM (1929) Field book of marine fishes of the Atlantic coast from Labrador to Texas. Putnam, New York , pp 164–165

  • Clark E (1959) Functional hermaphroditism and self-fertilization in serranid fish. Science 129:215–216

    CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCR: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    CAS  PubMed  Google Scholar 

  • Cole KS, Noakes DLG (1997) Gonadal development and sexual allocation in mangrove killifish Rivulus marmoratus (Pisces, Atherinomorpha) Copeia 1997:596–600

  • Doi M, Matsuda M, Tomaru M, Matsubayashi H, Oguma Y (2001) A locus for female discrimination behavior causing sexual isolation in Drosophila. Proc Natl Acad Sci USA 98:6714–6719

    CAS  PubMed  Google Scholar 

  • Domeier ML (1994) Speciation in the serranid fish Hypoplectrus. Bull Mar Sci 54:103–141

    Google Scholar 

  • Graves JE, Rosenblatt RH (1980) Genetic relationships of the color morphs of the serranid fish Hypoplectrus unicolor. Evolution 34:240–245

    Google Scholar 

  • Guitart D (1977) Sinopsis de los peces marinos de Cuba, vol III. Acad Cienc Cuba

  • Humman P (1994) Reef fish identification, 2nd edn. New World Publications, Jacksonville, Fla., pp 111–125

  • Jordan DS, Everman BW (1896) The fishes of north and middle America, vol 1. Smithsonian Institution, United States National Museum, Washington, D.C., pp 1189–1194

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    CAS  PubMed  Google Scholar 

  • Mallet J, Joron M (1999) Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance, and speciation. Annu Rev Ecol Syst 30:201–233

    Article  Google Scholar 

  • McMillan WO, Palumbi SR (1997) Rapid rate of control-region evolution in Pacific butterflyfishes (Chaetodontidae). J Mol Evol 45:473–84

    CAS  PubMed  Google Scholar 

  • McMillan WO, Weight LA, Palumbi SR (1999) Color pattern evolution, assortative mating, and genetic differentiation in brightly colored butterflyfishes (Chaetodontidae). Evolution 53:247–260

    Google Scholar 

  • Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553

    Article  CAS  PubMed  Google Scholar 

  • Moran P, Kornfield I (1993) Retention of ancestral polymorphism in the Mbuna species flock (Teleostei: Cichlidae) of Lake Malawi. Mol Biol Evol 10:1015–1029

    CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

  • Palumbi SR, Martin AP, Romano S, McMillan WO, Stice L, Grabowsqui G (1991) The simple fool's guide to PCR. ver. 2.0. University of Hawaii, Honolulu, HI

  • Parker A, Kornfield I (1997) Evolution of the mitochondrial DNA control region in the mbuna (Cichlidae) species flock of the Lake Malawi, East Africa. J Mol Evol 45:70–83

    CAS  PubMed  Google Scholar 

  • Poey F (2000) Ictiología cubana, vol I. Imagen contemporánea, Colección Biblioteca de Clásicos Cubanos, No. 7

  • Posada D., Crandall KA, Templeton AR (2000) GEODIS: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488

    CAS  PubMed  Google Scholar 

  • Randall JE (1967) Food habits of the reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  • Randall JE (1968) Caribbean reef fishes. Trop Fish Hobbyist, N.J.

  • Rocha-Olivares A, Kimbrell CA, Eitner BJ, Vetter RD (1999) Evolution of a mitochondrial cytochrome b gene sequence in the species-rich genus Sebastes (Teleostei, Scorpaenidae) and its utility in testing the monophyly of the subgenus Sebastomus. Mol Phylogenet Evol 11:426–440

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal E, Coutelle O, Craxton M (1993) Large-scale production of DNA sequencing templates by microtitre format PCR. Nucleic Acids Res 21:173–174

    CAS  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

  • Soto CG, Leatherland JF, Noakes DLG (1992) Gonadal histology in the self-fertilizing hermaphroditic fish Rivulus marmoratus Pisces Cyprinodontidae. Can J Zool 70:2338–2347

    Google Scholar 

  • Takahata N, Slatkin M (1984) Mitochondrial gene flow. Proc Natl Acad Sci USA 81:1764–1767

    CAS  PubMed  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    CAS  PubMed  Google Scholar 

  • Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Amblystoma tigrinum. Genetics 140:767–782

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Thresher R (1978) Polymorphism, mimicry and evolution of the hamlets (Hypoplectrus, Serranidae). Bull Mar Sci 28:345–353

    Google Scholar 

  • Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16:381–390

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gaspar González, Georgina Espinosa and Beatriz Guitart for valuable comments and suggestions throughout this study; Dominique Vautrin for laboratory assistance, and anonymous reviewers for helpful comments. We state that the experiments carried out during this investigation comply with the current laws of Cuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solignac.

Additional information

Communicated by S.A. Poulet, Roscoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Machado, E., Chevalier Monteagudo, P.P. & Solignac, M. Lack of mtDNA differentiation among hamlets (Hypoplectrus, Serranidae). Marine Biology 144, 147–152 (2004). https://doi.org/10.1007/s00227-003-1174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-003-1174-9

Keywords

Navigation