Skip to main content
Log in

Molecular phylogeny of Ostracoda (Crustacea) inferred from 18S ribosomal DNA sequences: implication for its origin and diversification

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Nucleotide sequences for the 18S rDNA of 17 ostracod species, representing 4 extant orders and 12 superfamilies, were determined and compared with known sequences of other crustaceans. Resulting molecular phylogenetic trees based on maximum-likelihood, maximum-parsimony, and neighbor-joining methods consistently indicated that the Podocopida plus Platycopida forms a monophyletic group, but did not indicate monophyly of the Ostracoda consisting of the four orders, Podocopida, Platycopida, Kirkbyocopida, and Myodocopida. The tree topology and the crustacean fossil record suggest that the lineage of podocopidans and platycopidans, that of kirkbyocopidans, and that of myodocopidans should have separately been established already in the Cambrian, although there is no ostracod fossil record in that time period. Close relationships between the Bythocytheroidea and Cytheroidea and among the Macrocypridoidea, Pontocypridoidea, and Cypridoidea can safely be postulated, but other relationships among podocopidan and platycopidan superfamilies could not be resolved from the 18S rDNA data. The polychotomous relationship among five lineages of the podocopidan and platycopidan superfamilies, i.e. Cytherelloidea, Bairdioidea, Darwinuloidea, Bythocytheroidea plus Cytheroidea, and Macrocypridoidea plus Pontocypridoidea plus Cypridoidea, suggests that common ancestors of those lineages diverged from each other rapidly in short intervals in the early Paleozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–c.
Fig. 2a–c.
Fig. 3a–e.
Fig. 4a–q.
Fig. 5.
Fig. 6a–c.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Abele LG, Spears T, Kim W, Applegate MA (1992) Phylogeny of selected maxillopodan and other crustacean taxa based on 18S ribosomal nucleotide sequences: a preliminary analysis. Acta Zool 73:373–382

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Andres D (1969) Ostracoden aus dem mittleren Kambrium von Öland. Lethaia 2:165–180

    Google Scholar 

  • Athersuch J, Horne DJ, Whittaker JE (1989) Marine and brackish water ostracods (superfamilies Cypridacea and Cytheracea): keys and notes for the identification of the species. The Linnean Society of London and the Estuarine and Brackish-Water Sciences Association, Brill, Leiden

  • Benson RH, Berdan JM, van den Bold WA, Hanai T, Hessland I, Howe HV, Kesling RV, Levinson SA, Reyment RA, Moore RC, Scott HW, Shaver RH, Sohn IG, Stover LE, Swain FM, Sylvester-Bradley PC (1961) Systematic descriptions. In: Moore RC (ed) Treatise on invertebrate paleontology, part Q. Arthropoda 3. Crustacea. Ostracoda. Geological Society of America and University of Kansas Press, Lawrence, pp 99–421

  • Bettenstaedt F (1958) Phylogenetische Beobachtungen in der Mikropaläontologie. Paläontol Z 32:115–140

    Google Scholar 

  • Bowman TE, Abele LG (1982) Classification of the recent Crustacea. In: Abele LG (ed) The biology of Crustacea, vol 1. Systematics, the fossil record, and biogeography. Academic, New York, pp 1–27

  • Briggs DEG (1978) The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. Philos Trans R Soc Lond B Biol Sci 281:439–487

    Google Scholar 

  • Briggs DEG (1983) Affinities and early evolution of the Crustacea: the evidence of the Cambrian fossils. In: Schram FR (ed) Crustacean issues, vol 1. Crustacean phylogeny. Balkema, Rotterdam, pp 1–22

  • Briggs DEG, Weedon MJ, Whyte MA (1993) Arthropoda (Crustacea excluding Ostracoda). In: Benton MJ (ed) The fossil record, vol 2. Chapman and Hall, London, pp 321–342

  • Cohen AC (1982) Ostracoda. In: Parker SP (ed) Synopsis and classification of living organisms. McGraw-Hill Book, New York, pp 181–202

  • Cohen AC, Martin JW, Kornicker LS (1998) Homology of Holocene ostracode biramous appendages with those of other crustaceans: the protopod, epipod, exopod and endopod. Lethaia 31:251–265

    Google Scholar 

  • Dahl E (1991) Crustacea Phyllopoda and Malacostraca: a reappraisal of cephalic and thoracic shield and fold systems and their evolutionary significance. Philos Trans R Soc Lond B Biol Sci 334:1–26

    Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenetics: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Gilbert D (1996) SeqPup (biological sequence editor and analysis program), version 0.6. Department of Biology, University of Indiana, Indiana

  • Gramm MN (1985) The muscle scar in cavellinids and its importance for the phylogeny of platycope ostracodes. Lethaia 18:39–52

    Google Scholar 

  • Hanai T, Ikeya N (1991) Two new genera from the Omma-Manganji ostracod fauna (Plio-Pleistocene) of Japan—with a discussion of theoretical versus purely descriptive ostracod nomenclature. Trans Proc Palaeontol Soc Jpn New Ser 163:861–878

    Google Scholar 

  • Hanai T, Tabuki R (1995) Shell structure of Promanawa—discussion on the bauplan of podocopid Ostracoda. Mitt Hambg Zool Mus Inst 92:259–272

    Google Scholar 

  • Harding JP (1964) Crustacean cuticle with reference to the ostracod carapace. In: Puri HS (ed) Ostracods as ecological and palaeoecological indicators. Pubbl Stn Zool Napoli 33[Suppl]:9–31

  • Hartmann G (1963) Zur Phylogenie und Systematik der Ostracoden. Z Zool Syst Evolutionsforsch 1:1–154

    Google Scholar 

  • Hartmann G (1964) Neontological and paleontological classification of Ostracoda. In: Puri HS (ed) Ostracods as ecological and palaeoecological indicators. Pubbl Stn Zool Napoli 33[Suppl]:550–587

  • Hartmann G, Puri HS (1974) Summary of neontological and paleontological classification of Ostracoda. Mitt Hambg Zool Mus Inst 70:7–73

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

  • Herrig E (1988) Punciide Ostrakoden aus der hoheren Oberkreide der mittleren Ostsee. Geschiebekunde Aktuell 4:33–37

    Google Scholar 

  • Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195

    CAS  PubMed  Google Scholar 

  • Hinz ICU (1993) Evolutionary trends in archaeocopid ostracods. In: McKenzie KG, Jones PJ (eds) Ostracoda in the earth and life sciences. Balkema, Rotterdam, pp 3–12

  • Hinz-Schallreuter I, Schallreuter R (1999) Ostrakoden. Ferdinand Enke Verlag, Stuttgart

  • Hornibrook N de B (1949) A new family of living Ostracoda with striking resemblances to some Palaeozoic Beyrichiidae. Trans R Soc NZ 77:469–471

    Google Scholar 

  • Hou X, Sivester DJ, Williams M, Walossek D, Bergström J (1996) Appendages of the arthropod Kunmingella from the early Cambrian of China: its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda. Philos Trans R Soc Lond B Biol Sci 351:1131–1145

    Google Scholar 

  • Jones PJ, McKenzie KG (1980) Queensland Middle Cambrian Bradoriida (Crustacea); new taxa, palaeobiogeography and biological affinities. Alcheringa 4:203–225

    Google Scholar 

  • Kimura M (1980) A simple model for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Google Scholar 

  • Kornicker LS (1969) Relationship between the free and attached margins of the myodocopid ostracod shell. In: Neale JW (ed) The taxonomy, morphology and ecology of recent Ostracoda. Oliver and Boyd, Edinburgh, pp 109–135

  • Kornicker LS (1975) Antarctic Ostracoda (Myodocopina). Smithson Contr Zool 163:1–720

    Google Scholar 

  • Kornicker LS, Sohn IG (1976) Phylogeny, ontogeny and morphology of living and fossil Thaumatocypridacea (Myodocopa: Ostracoda). Smithson Contr Zool 219:1–124

    Google Scholar 

  • Kozur H (1972) Einige Bemerkungen zur Systematik der Ostracoden und Beschreibung neuer Platycopida aus der Trias Ungarns und der Slowakei. Geol-Palaeontol Mitt Innsbruck 2:1–27

  • Kozur H (1974) Die Bedeutung der Bradoriida als Vorlaeufer der post-Kambrischen Ostracoden. Z Geol Wiss 2:823–830

    Google Scholar 

  • Kristan-Tollmann E (1977a) Zur Evolution des Schließmuskelfeldes bei Healdiidae und Cytherellidae (Ostracoda). Neues Jahrb Geol Palaeont Abh 10:621–639

    Google Scholar 

  • Kristan-Tollmann E (1977b) On the development of the muscle-scar patterns in Triassic Ostracoda. In: Löffler H, Danielopol D (eds) Aspects of ecology and zoogeography of recent and fossil Ostracoda. Junk, Hague, pp 133–143

  • Latreille PA (1802) Des Crustaces et des Insectes. In: Histoire Naturelle, vol 4. Dufart, Paris, pp 197–199

  • Maddocks RF (1976) Quest for the ancestral podocopid: numerical cladistic analysis of ostracode appendages, a preliminary report. Abh Verh Naturwiss Ver Hambg 18/19[Suppl]:39–53

  • Maddocks RF (1982) Ostracoda. In: Abele LG (ed) The biology of Crustacea, vol 1. Systematics, the fossil record, and biogeography. Academic, New York, pp 221–239

  • Malz H, Jellinek T (1989) Cytherellidae Ostracoden aus dem E-afrikanischen Küstengebiet. Modell-Vorstellungen zur Differenzierung und phylogenetischen Entwicklung. Cour Forsch-Inst Senckenb 113:187–233

  • Martens K, Horne DJ, Griffiths HI (1998) Age and diversity of non-marine ostracods. In: Martens K (ed) Sex and parthenogenesis. Evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 37–55

  • McKenzie KG, Müller KJ, Gramn MN (1983) Phylogeny of Ostracoda. In: Schram FR (ed) Crustacean issues, vol 1. Crustacean phylogeny. Balkema, Rotterdam, pp 29–46

  • Müller KJ (1964) Ostracoda (Bradoriina) mit phosphatischen Gehäusen aus dem Oberkambrium von Schweden. Neues Jahrb Geol Palaeontol Abh 121:1–46

    Google Scholar 

  • Nelles L, Fang BL, Volckaert G, Vandenberghe A, De Wachter R (1984) Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs. Nucleic Acids Res 12:8749–8768

    CAS  PubMed  Google Scholar 

  • Oakley TH, Cunningham CW (2002) Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye. Proc Natl Acad Sci USA 99:1426–1430

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Chenuil A, Adoutte A (1994) Can the Cambrian explosion be inferred through molecular phylogeny? Dev Suppl 1994:15–25

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schallreuter R, Jones CR (1984) A new Ordovician kirkbyacean Ostracode. Neues Jahrb Geol Palaeontol Abh 1984:416–426

    Google Scholar 

  • Schram FR (1986) Crustacea. Oxford University Press, Oxford

  • Scott HW (1961) Classification of Ostracoda. In: Moore RC (ed) Treatise on invertebrate paleontology, part Q. Arthropoda 3. Crustacea. Ostracoda. Geological Society of America and University of Kansas Press, Lawrence, pp 74–92

  • Scott HW, Sylvester-Bradley PC (1961) Suborder Platycopina Sars, 1866. In: Moore RC (ed) Treatise on invertebrate paleontology, part Q. Arthropoda 3. Crustacea. Ostracoda. Geological Society of America and University of Kansas Press, Lawrence, pp 380–382

  • Shu D, Vannier J, Luo H, Chen L, Zhang X, Hu S (1999) Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (Lower Cambrian; southwest China). Lethaia 32:279–298

    Google Scholar 

  • Siveter DJ, Williams M, Waloszek D (2001) A phosphatocopid crustacean with appendages from the Lower Cambrian. Science 293:479–481

    Article  CAS  PubMed  Google Scholar 

  • Spears T, Abele LG (1998) Crustacean phylogeny inferred from 18S rDNA. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 169–187

  • Swanson KM (1989a) Ostracod phylogeny and evolution—a manawan perspective. Cour Forsh-Inst Senckenb 113:11–20

  • Swanson KM (1989b) Manawa staceyi n. sp. (Punciidae, Ostracoda): soft anatomy and ontogeny. Cour Forsh-Inst Senckenb 113:235–249

  • Swanson KM (1993) The cytherelline hemipenis and the evolution of platycope ostracods. In: McKenzie KG, Jones PJ (eds) Ostracoda in the earth and life sciences. Balkema, Rotterdam, pp 591–598

  • Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland, Mass.

  • Sylvester-Bradley PC (1961) Order Archaeocopida. In: Moore RC (ed) Treatise on invertebrate paleontology, part Q. Arthropoda 3. Crustacea. Ostracoda. Geological Society of America and University of Kansas Press, Lawrence, pp 100–103

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Vannier J, Abe K (1992) Recent and Early Palaeozoic myodocope ostracodes: functional morphology, phylogeny, distribution and lifestyles. Palaeontology 35:485–517

    Google Scholar 

  • Vannier J, Chen JY (2000) The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia 33:295–311

    Article  Google Scholar 

  • Vannier J, Williams M, Siveter DJ (1997) The Cambrian ancestry of circulation in crustaceans. Lethaia 30:169–184

    Google Scholar 

  • Walossek D (1993) The Upper Cambrian Rehbachiella and the phylogeny of the Branchiopoda and Crustacea. Fossils Strata 32:1–202

    Google Scholar 

  • Walossek D (1995) The Upper Cambrian Rehbachiella, its larval development, morphology and significance for the phylogeny of Branchiopoda and Crustacea. Hydrobiologia 298:1–13

    Google Scholar 

  • Walossek D, Müller KJ (1994) Pentastomid parasites from the Lower Paleozoic of Sweden. Trans R Soc Edinb Earth Sci 85:1–37

    Google Scholar 

  • Whatley RC, Siveter DJ, Boomer ID (1993) Arthropoda (Crustacea: Ostracoda). In: Benton MJ (ed) The fossil record, vol 2. Chapman and Hall, London, pp 343–356

  • Wheeler W (1998) Molecular systematics and arthropods. In: Edgecombe GD (ed) Arthropod fossils and phylogeny. Columbia University Press, New York, pp 9–32

  • Wingstrand KG (1988) Comparative spermatology of the Crustacea Entomostraca, vol 2. Subclass Ostracoda. Biol Skr 32:1–149

    Google Scholar 

Download references

Acknowledgements

We are indebted to K. Tanabe for constructive criticism of the manuscript. We thank D.J. Horne and T. Kamiya for their help in sample collection in England. Thanks are extended to S. Ohta, Y. Shirayama, the captain, crew, and colleagues for their support during the R.V. "Tansei" cruises. We are grateful to A. Tsukagoshi, R. Ueshima, T. Oji, N. Ikeya, and T. Hanai, who provided us with many valuable suggestions. This research was supported in part by a Grant-in-Aid for Scientific Research (no. 10-5089) of the Ministry of Education, Science, Sports and Culture, Government of Japan. The experiments carried out in this study comply with the current laws of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yamaguchi.

Additional information

Communicated by T. Ikeda, Hakodate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, S., Endo, K. Molecular phylogeny of Ostracoda (Crustacea) inferred from 18S ribosomal DNA sequences: implication for its origin and diversification. Marine Biology 143, 23–38 (2003). https://doi.org/10.1007/s00227-003-1062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-003-1062-3

Keywords

Navigation