Skip to main content
Log in

Intracellular bacteria associated with the ascidian Ecteinascidia turbinata: phylogenetic and in situ hybridisation analysis

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The ascidian Ecteinascidia turbinata (Herdman) is a colonial sea squirt found in the Caribbean and Mediterranean Seas. In the present study, the bacterial complement of E. turbinata has been assessed by 16S rRNA gene analysis and the most commonly occurring strains identified by restriction fragment length polymorphism. Three strains were found to predominate using this approach, with one representing >50% of clones from both larval and adult material. The 16S rRNA gene sequence of the most commonly occurring strain did not match with any known bacterial sequences and could only be assigned to the γ-proteobacteria subdivision. The two other frequently occurring strains were assigned to the Mollicutes. In situ hybridisation analysis with eubacterial probes to 16S rRNA revealed the presence of apparently endosymbiotic bacteria in adult and larval tissue, and electron microscopy confirmed the presence of putative bacteriocytes in the larval tissue. The presence of the same bacteria in the brooded larvae suggested that they were vertically transmitted from parent to offspring. Further hybridisation using a novel probe designed to be specific to the 16S rRNA sequence of the dominant strain, highlighted the same cell types as that revealed by the eubacterial probe. The results suggest that the bacteria represent a novel strain, denoted "Candidatus Endoecteinascidia frumentensis", and that they may have an important role in the biology of E. turbinata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2.
Fig. 3.
Fig. 4A–E.
Fig. 5A–D.
Fig. 6A–E.
Fig. 7A, B.

Similar content being viewed by others

References

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA–targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Berrill NJ (1932) Ascidians of the Bermudas. Biol Bull (Woods Hole) 62:77–88

    Google Scholar 

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localised in distinct populations of bacterial symbionts. Experentia 52:716–722

    CAS  Google Scholar 

  • Bingham BL, Young CM (1991) Larval behaviour of the ascidian Ecteinascidia turbinata Herdman: an in situ experimental study of the effects of swimming on dispersal. J Exp Mar Biol Ecol 145:189–204

    Google Scholar 

  • Bingham BL, Young CM (1995) Stochastic events and dynamics of a mangrove root epifaunal community. Mar Ecol 16:145–163

    Google Scholar 

  • Boyle PJ, Maki JS, Mitchell R (1987) Mollicute identified in novel association with aquatic invertebrate. Curr Microbiol 15:85–89

    CAS  Google Scholar 

  • Bullard SG, Lindquist NL, Hay ME (1999) Susceptibility of invertebrate larvae to predators: how common are post-capture larval defenses. Mar Ecol Prog Ser 191:153–161

    Google Scholar 

  • Cary SC, Giovannoni SJ (1993) Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90:5695–5699

    CAS  PubMed  Google Scholar 

  • Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatins by the bacterial symbiont "Candidatus Endobugula sertula" of the bryozoan Bugula neritina. Appl Environ Microbiol 67:4531–4537

    CAS  PubMed  Google Scholar 

  • Davis AR (1991) Alkaloids and ascidian chemical defense: evidence for the ecological role of natural products from Eudistoma olivaceum. Mar Biol 111:375–379

    Google Scholar 

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulphur-oxidising bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510

    CAS  PubMed  Google Scholar 

  • Distel DL, DeLong EF, Waterbury JB (1991) Phylogenetic characterisation and in situ localisation of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridisation. Appl Environ Microbiol 57:2376–2383

    CAS  PubMed  Google Scholar 

  • Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev 64:409–434

    CAS  Google Scholar 

  • Dubilier N, Mulders C, Ferdelman T, de Beer D, Pernthaler A, Klein M, Wagner M, Erseus C, Thierman F, Krieger J, Giere O, Amann R (2001) Endosymbiotic sulphate-reducing and sulphide-oxidising bacteria in an oligochaete worm. Nature 411:298–302

    Article  CAS  PubMed  Google Scholar 

  • Durand P, Gros O, Frenkiel L, Prieur D (1996) Phylogenetic characterization of sulfur-oxidizing bacterial endosymbionts in three tropical Lucinidae by 16S rDNA sequence analysis. Mol Mar Biol Biotechnol 5:37–42

    CAS  Google Scholar 

  • Faulkner DJ (2000) Marine pharmacology, vol 77. Antonie van Leeuwenhoek, pp 135–145

  • Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 66:2748–2758

    Article  CAS  PubMed  Google Scholar 

  • Fukatsu T, Tsuchida T, Nikoh N, Koga R (2001) Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 67:1284–1291

    Article  CAS  PubMed  Google Scholar 

  • Haygood MG, Davidson SK (1997) Small subunit rRNA genes and in situ hybridisation with oligonucleotides specific for the bacterial symbionts of the larvae of the bryozoan Bugula neritina and proposal of 'Candidatus Endobugula sertula'. Appl Environ Microbiol 6:4612–4616

    Google Scholar 

  • Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1:33–43

    CAS  PubMed  Google Scholar 

  • Hirose E (2000) Plant rake and algal pouch of the larvae in the tropical ascidian Diplosoma similis: an adaptation for vertical transmission of photosynthetic symbionts Prochloron sp. Zool Sci (Tokyo) 17:233–240

    Google Scholar 

  • Hirose E, Aoki M, Chiba K (1996) Fine structures of tunic cells and distribution of bacteria in the tunic of luminescent ascidian Clavelina miniata (Ascidiacea, Urochordata). Zool Sci (Tokyo) 13:519–523

    Google Scholar 

  • Hirose E, Maruyama T, Cheng L, Lewin RA (1998) Intra- and extracellular distribution of photosynthetic prokaryotes, Prochloron sp., in a colonial ascidian: ultrastructural and quantitative studies. Symbiosis 25:301–310

    Google Scholar 

  • Holland ND, Nealson KH (1978) The fine structure of the echinoderm cuticle and subcuticular bacteria of echinoderms. Acta Zool 59:169–185

    Google Scholar 

  • Holland PWH (1996) Whole mount in situ hybridisation applicable to Amphioxus and other small larvae. In: Ferraris JD, Palumbi SR (eds) Molecular zoology. Advances, strategies and protocols. Wiley-Liss, New York, pp 476–483

  • Holmström C, Egan S, Franks A, McCloy S, Kjelleberg S (2002) Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol 41:47–58

    Article  Google Scholar 

  • Kelly MS, McKenzie JD (1995) Survey of the occurrence and morphology of sub-cuticular bacteria in shelf echinoderms from the north east Atlantic Ocean. Mar Biol 123:741–756

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Google Scholar 

  • Krueger DM, Gustafson RG, Cavanaugh CM (1996) Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biol Bull (Woods Hole) 190:195–202

    Google Scholar 

  • Lambert G, Lambert CC, Waaland JR (1996) Algal symbionts in the tunics of six New Zealand ascidians (Chordata, Ascidiacea). Invertebr Biol 115:67–78

    Google Scholar 

  • Lindquist N, Hay ME (1996) Palatability and chemical defense of marine invertebrate larvae. Ecol Monogr 66:431–450

    Google Scholar 

  • Lindquist N, Hay ME, Fenical W (1992) Defense of ascidians and their conspicuous larvae: adult vs. larval chemical defenses. Ecol Monogr 62:547–568

    Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    PubMed  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Protobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Google Scholar 

  • McFall-Ngai MJ (1999) Consequences of evolving with bacterial symbionts: insights from the squid–Vibrio associations. Annu Rev Ecol Syst 30:235–256

    Article  Google Scholar 

  • Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal–bacterium association: recruiting symbiotic Vibrios from the environment. Proc Natl Acad Sci USA 97:10231–10235

    Article  CAS  PubMed  Google Scholar 

  • Paul VJ, Lindquist N, Fenical W (1990) Chemical defense of the tropical ascidian Atapazoa sp. and its nudibranch predators Nembrotha spp. Mar Ecol Prog Ser 59:109–118

    CAS  Google Scholar 

  • Pennings SC, Pablo SR, Paul VJ, Duffy JE (1994) Effects of sponge secondary metabolites in different diets in feeding by three groups of consumers. J Exp Mar Biol Ecol 180:137–149

    Google Scholar 

  • Pisut DP, Pawlik JR (2002) Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J Exp Mar Biol Ecol 270:203–214

    Article  CAS  Google Scholar 

  • Polz MF, Cavanaugh CM (1998) Bias in template-to-product rations in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    CAS  PubMed  Google Scholar 

  • Proksch P, Edrada RA, Ebel R (2002) Drugs from the sea—current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134

    Article  CAS  PubMed  Google Scholar 

  • Rinehart KL (1992) Secondary metabolites from marine organisms. In: Chadwick DJ, Whelan J (eds) Secondary metabolites: their function and evolution. Ciba Found Symp 171:236–254

    CAS  PubMed  Google Scholar 

  • Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Keifer PA, Sun F, Li LH, Martin DG (1990) Ecteinascidin 729, 743, 745, 759A, 759B and 770, potent antitumour agents from the Caribbean tunicate Ecteinascidia turbinata. J Org Chem 55:4512–4515

    CAS  Google Scholar 

  • Rottmayr EM, Steffan B, Wanner G (2001) Pigmentation and tunic cells in Cystodytes dellechiajei (Urochordata, Ascidiacea). Zoomorphology 120:159–170

    Article  Google Scholar 

  • Sambrook E, Fritsch F, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

  • Santavy DL, Willenz P, Colwell RR (1990) Phenotypic study of bacteria associated with the Carribean sclerosponge, Ceratoporella nicholsoni. Appl Environ Microbiol 56:1750–1762

    CAS  PubMed  Google Scholar 

  • Sauer C, Dudaczek D, Holldobler B, Gross R (2002) Tissue localisation of the endosymbiont bacterium "Candidatus Blochmannia floridanus" in adults and larvae of the carpenter ant Camponotus floridanus. Appl Environ Microbiol 68:4187–4193

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, "Candidatus Entotheonella palauensis". Mar Biol 136:969–977

    CAS  Google Scholar 

  • Sipe AR, Wilbur AE, Cary SC (2000) Bacterial symbiont transmission in the wood-boring shipworm Bankia setacea (Bivalvia: Teredinidae). Appl Environ Microbiol 66:1685–1691

    Article  CAS  PubMed  Google Scholar 

  • Svane IB, Young CM (1989) The ecology and behaviour of ascidian larvae. Oceanogr Mar Biol Annu Rev 27:45–90

    Google Scholar 

  • Swofford DL (2001) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer, Sunderland, Mass.

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Google Scholar 

  • Vervoort HC, Pawlik JR, Fenical W (1998) Chemical defense of the Caribbean ascidian Didemnum conchyliatum. Mar Ecol Prog Ser 164:213–220

    Google Scholar 

  • Waddell B, Pawlik JR (2000) Defense of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar Ecol Prog Ser 195:125–132

    Google Scholar 

  • Wahl M (1995) Bacterial epibiosis on Bahamian and Pacific ascidians. J Exp Mar Biol Ecol 191:239–255

    Article  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:607–703

    Google Scholar 

  • Wilkinson DG (1994) In situ hybridisation: a practical approach. Rickwood D, Hames BD (eds) Practical approaches series. IRL Press, Oxford

    Google Scholar 

  • Woollacott RM (1981) Associations of bacteria with bryozoan larvae. Mar Biol 65:155–158

    Google Scholar 

  • Young CM, Bingham BL (1987) Chemical defense and aposematic coloration in larvae of the ascidian Ecteinascidia turbinata. Mar Biol 96:539–544

    CAS  Google Scholar 

  • Zheng D, Alm EW, Stahl DA, Raskin L (1996) Characterisation of universal small-subunit rRNA hybridisation probes for quantitative molecular microbial ecology studies. Appl Environ Microbiol 62:4504–4513

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded under the EU MAST-CRAFT scheme, project code MAS3-CT098-0179. Thanks to A. Keay, C. Barbero, S. Martin, H. Margot and B. Kukurtku for help with maintenance and supply of animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Moss.

Additional information

Communicated by J.P. Thorpe, Port Erin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, C., Green, D.H., Pérez, B. et al. Intracellular bacteria associated with the ascidian Ecteinascidia turbinata: phylogenetic and in situ hybridisation analysis. Marine Biology 143, 99–110 (2003). https://doi.org/10.1007/s00227-003-1060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-003-1060-5

Keywords

Navigation