Skip to main content
Log in

Karyotype and sex determination in Dinophilus gyrociliatus (Polychaeta: Dinophilidae)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The study of the male and female karyotypes of the polychaete Dinophilus gyrociliatus was performed with the aim of ascertaining the diploid number of chromosomes and confirming the existence of karyological differences between the two sexes. Our results evidenced that the female karyotype of D. gyrociliatus consists of 2n=24 chromosomes, while the male karyotype has 2n=23 chromosomes. X chromosomes are subtelocentric and much bigger than the autosomes. The size of the D. gyrociliatus chromosomes, which in the female embryos vary in length from little more than 2.8 μm to less than 0.7 μm, are relatively small by comparison with those of other polychaetes. The existence of maternal and environmental factors able to influence the sex ratio of D. gyrociliatus and chromosomal differences between the sexes confirms that: (1) sex determination is chromosomal and syngamic of the XX–X0 type and (2) control of the sex ratio is progamic and depends on genetic and environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Bacci G (1956) Indicazioni di un effetto materno nella determinazione sessuale di Dinophilus gyrociliatus (=D. apatris). Ric Sci 26:71–76

    Google Scholar 

  • De Beauchamp P (1910) Sur l'existence et les conditions de la parthénogènes chez Dinophilus. C R Acad Sci Ser III Sci Vie 150:739–741

    Google Scholar 

  • Dixon DR, Pascoe PL, Dixon LRJ (1998) Karyotypic differences between two species of Potamoceros, P. triqueter and P. lamarckii (Polychaeta: Serpulidae). J Mar Biol Assoc UK 78:1113–1126

    Google Scholar 

  • Gambi MC, Ramella L, Sella G, Protto P, Aldieri E (1997) Variation in genome size in benthic polychaetes: systematic and ecological relationships. J Mar Biol Assoc UK 77:1045–1057

    Google Scholar 

  • Hartmann M (1943) Die Sexualität. Fischer, Jena

  • Jha AN, Hutchinson TH, Mackay JM, Elliot BM, Pascoe PL, Dixon DR (1995) The chromosomes of Platynereis dumerilii (Polychaeta: Nereidae). J Mar Biol Assoc UK 75:551–562

    Google Scholar 

  • Korablev PV, Radashevsky VI, Mancenko GP (1999) The XX–X0 (male heterogametic) sex chromosome system in Polydora curiosa (Polychaeta: Spionidae). Ophelia 51:193–201

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Google Scholar 

  • Malsen H von (1906) Geschlechtsbestimmende Einflüsse und Eibildung des Dinophilus apatris. Arch Mikrosk Anat EntwMech 69:63

    Google Scholar 

  • Martin F, Traut W (1987) The mode of sex determination in Dinophilus gyrociliatus (Archiannelida). Int J Invertebr Reprod Dev 11:159–172

    Google Scholar 

  • Padoa E (1948) Storia naturale del sesso. Einaudi, Torino

  • Petraitis PS (1985) Digametic sex determination in the marine polychaete Capitella capitata (species type 1). Heredity 54:151–156

    Google Scholar 

  • Petraitis PS (1991) The effects of sex ratio and density on the expression of gender in the polychaete Capitella capitata. Evol Ecol 5:393–404

    Google Scholar 

  • Pfannenstiel HD (1984) Sex determination and intersexuality in polychaetes. In: Fisher A, Pfannenstiel HD (eds) Fortschritte der Zoologie, vol 29: Polychaete Reproduction. Fisher, Stuttgart, pp 81–98

  • Premoli MC, Sella G, Berra GP (1996) Heritable variation of sex ratio in a polychaete worm. J Evol Biol 9:845–854

    Google Scholar 

  • Prevedelli D, Simonini R (2000) Effects of salinity and two food regimes on survival, fecundity and sex ratio in two groups of Dinophilus gyrociliatus (Polychaeta: Dinophilidae). Mar Biol 137:23–29

    Article  Google Scholar 

  • Prevedelli D, Simonini R (2001) Effects of diet and laboratory rearing on demography of Dinophilus gyrociliatus (Polychaeta: Dinophilidae). Mar Biol 139:929–935

    Article  Google Scholar 

  • Prevedelli D, Zunarelli Vandini R (1999) Survival, fecundity and sex ratio of Dinophilus gyrociliatus (Polychaeta: Dinophilidae) under different dietary conditions. Mar Biol 132:231–236

    Article  Google Scholar 

  • Prowazek S (1900) Zur Entwicklungsgeschichte des Wurmes Dinophilus apatris. Natwiss Wschr 15:397–399

    Google Scholar 

  • Sato M, Ikeda M (1992) Chromosomal complements of two forms of Neanthes japonica (Polychaeta, Nereididae) with evidence of male-heterogametic sex chromosomes. Mar Biol 112:299–307

    Google Scholar 

  • Sella G, Vitturi R, Ramella L, Colomba MS (1995) Chromosomal nucleolar organizer region (NOR) phenotypes in nine species of the genus Ophryotrocha (Polychaeta: Dorvilleidae). Mar Biol 124:425–433

    Google Scholar 

  • Shearer C (1912) The problem of sex determination in Dinophilus gyrociliatus. I. The sexual cycle. Q J Microsc Sci 57:329–371

    Google Scholar 

  • Sitnikova TY, Poberezhny ES (1996) Chromosomes of Baikalian polychaetes of the genus Manayunkia (Sedentaria, Sabellidae). In: Gokhman VE, Kuznetsova VG (eds) Karyosystematics of the invertebrate animals, vol 3. Moscow State University, Moscow, pp 67–69

  • Soldi R, Ramella L, Gambi MC, Sordino P, Sella G (1994) Genome size in Polychaetes: relationship with body length and life habit. Mem Mus Natl Hist Nat 162:129–135

    Google Scholar 

  • Traut W (1966) Eine Mutante mit vergrösserten Männchen-Eiern bei Dinophilus gyrociliatus (Archiannelida). Experientia 22:237–238

    CAS  PubMed  Google Scholar 

  • Traut W (1969) Zur Sexualität von Dinophilus gyrociliatus (Archiannelida). I. Der Einfluß von Außenbedingungen und genetischen Faktoren auf das Geschlechtsverhältnis. Biol Zbl 88:469–495

    Google Scholar 

  • Traut W (1970) Zur Sexualität von Dinophilus gyrociliatus (Archiannelida). III. Die Geschlechtsbestimmung. Biol Zbl 89:137–161

    Google Scholar 

  • Tzonis K (1938) Beeinflussung der Geschlechtsverhältnisse bei Dinophilus apatris Korsch. durch Außenbedingungen. Zool Jb 58:433–574

    Google Scholar 

  • Vitturi R, Ramella L, Colomba MS, Caputo V, Sella G (2000) NOR regions of polychaete worms of the genus Ophryotrocha studied by chromosomes banding techniques and FISH. J Hered 91:18–23

    Article  CAS  PubMed  Google Scholar 

  • Westheide W (1984) The concept of reproduction in polychaetes with small body size: adaptation in interstitial species. In: Fisher A, Pfannenstiel HD (eds) Fortschritte der Zoologie, vol 29: Polychaete Reproduction. Fisher, Stuttgart, pp 265–287

  • Zunarelli Vandini R (1965) A possible way of origin of parthenogenetic strains of Dinophilus apatris (=Dinophilus gyrociliatus). Experientia 21:388

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank G. Sella (Turin) and M. Mandrioli, T. Altiero, L. Rebecchi (Modena) for criticism and suggestions that greatly improved the manuscript. This work was supported by the Italian Ministero dell'Università e della Ricerca (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Simonini.

Additional information

Communicated by R. Cattaneo-Vietti, Genova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonini, R., Molinari, F., Pagliai, A.M. et al. Karyotype and sex determination in Dinophilus gyrociliatus (Polychaeta: Dinophilidae). Marine Biology 142, 441–445 (2003). https://doi.org/10.1007/s00227-002-0979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-002-0979-2

Keywords

Navigation