Skip to main content
Log in

Comparative studies and evolution of muscles in chaetognaths

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The chaetognath locomotory muscles exhibit astonishing variations. The secondary muscle, which represents less than 1% of the body wall, has two forms. One is unique in the animal kingdom (alternation of two sarcomere types: “classical cross-striated” s1 and a unique type, s2) and has already been described; it characterizes most of the genera. The other, found only in more or less benthic species, functions by supercontraction. In the primitive genus Archeterokrohnia, it often exhibits “s1/s2 hybrid” sarcomeres, appearing as s2 sarcomeres partly containing s1 ones; moreover, the alternation of s1 and s2 sarcomeres is not regular. New sarcomeres are formed by the splitting of the Z-discs between two consecutive s1 sarcomeres. This is another unique feature of the chaetognath secondary muscle which facilitates understanding the transition from the first to the second form: suppression of s2 sarcomeres and constitution of a supercontraction capability in s1 sarcomeres. The transverse muscle, present in the less evolved genera living near or on the bottom, also has two forms: either classical cross-striated or, in more or less benthic species, supercontracting. Supercontraction would be a derived character. The peculiarities of the primary, secondary and transverse muscles of the truly benthic chaetognaths are different from those of all the planktonic or benthoplanktonic chaetognaths. The variations in the histological and cytological characteristics of the muscles agree with the phylogenetic trends previously proposed for the phylum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvariño A (1963) Quetognatos epiplanctonicos del Mar de Cortes. Rev Soc Mex Hist Nat 24:97–203

    Google Scholar 

  • Auber J (1967) Distribution of two kinds of myofilaments in insect muscles. Am Zool 7:451–456

    Google Scholar 

  • Bernstein SI, O'Donnell PT, Cripps RM (1993) Molecular genetic analysis of muscle development, structure and function in Drosophila. Int Rev Cytol 143:63–152

    Article  PubMed  CAS  Google Scholar 

  • Bone Q, Duvert M (1991) Locomotion and buoyancy. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of chaetognaths. Oxford University Press. Oxford, pp 32–44

    Google Scholar 

  • Bone Q, Goto T (1991) The nervous system. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of chaetognaths. Oxford University Press, Oxford, pp 18–31

    Google Scholar 

  • Candia Carnevali MD (1978) Z-line in supercontraction in the hydraulic muscular systems of insect larvae. J Exp Zool 203:15–30

    Article  Google Scholar 

  • Casanova JP (1985) Description de l'appareil génital primitif du genre Heterokrohnia et nouvelle classification des chaetognathes. C R Séances Hebd Acad Sci Paris 301 III 8:397–402

    Google Scholar 

  • Casanova JP (1986) Archeterokrohnia rubra n. gen., n. sp., nouveau chaetognathe abyssal de l'Atlantique nord-africain: description et position systématique, hypothèse phylogénétique. Bull Mus Natl Hist Nat Paris 4e séries 8 A 1:185–194

    Google Scholar 

  • Casanova JP (1987) Deux chaetognathes benthiques nouveaux du genre Spadella des parages de Gibraltar. Remarques phylogénétiques. Bull Mus Natl Hist Nat Paris 4e séries 9 A 2:375–390

    Google Scholar 

  • Casanova JP, Duvert M (1996) Biodiversity and evolutionary trends in the phylum Chaetognatha. Bull Soc Zool Fr 121:77–80

    Google Scholar 

  • Deurs B van (1972) On the ultrastructure of the mature spermatozoon of a chaetognath. Spadella cephaloptera. Acta Zool 53:93–104

    Google Scholar 

  • Ducret F (1978) Particularités structurales du système optique chez deux chaetognathes (Sagitta tasmanica et Eukrohnia hamata) et incidences phylogénétiques. Zoomorphology 91:201–215

    Article  Google Scholar 

  • Duvert M (1989) Etude de la structure et de la fonction de la musculature locomotrice d'un invertébré. Apport de la biologie cellulaire à l'histoire naturelle des chaetognathes. Cuad Invest Biol Bilbao 15:1–30

    Google Scholar 

  • Duvert M (1991) A very singular muscle: the secondary muscle of chaetognaths. Philos Trans R Soc Lond B 332:245–260

    Article  Google Scholar 

  • Duvert M, Barets AL (1983) Ultrastructural studies of neuromuscular junctions in visceral and skeletal muscles of the chaetognath Sagitta setosa. Cell Tissue Res 233:657–669

    Article  PubMed  CAS  Google Scholar 

  • Duvert M, Casanova JP (1994) Biodiversity at the cellular and supracellular levels of the musculo-skeletal complex of chaetognaths. Bull Soc Zool Fr 119:309–314

    Google Scholar 

  • Duvert M, Salat C (1995) Ultrastructural studies of the visceral muscles of chaetognaths. Acta Zool 76:75–87

    Article  Google Scholar 

  • Duvert M, Savineau JP (1986) Ultrastructural and physiological studies of the contraction of the trunk musculature of Sagitta setosa (Chaetognath). Tissue Cell 18:937–952

    Article  PubMed  CAS  Google Scholar 

  • Eakin RM, Westfall JA (1964) Fine structure of the eye of a chaetognath. J Cell Biol 21:115–131

    Article  PubMed  CAS  Google Scholar 

  • Elder HY (1975) Muscle structure. In: Unsherwood PNR (ed) Insect muscle. Academic Press, New York, pp 1–74

    Google Scholar 

  • Franzini-Armstrong C (1975) Membranous systems in muscle fibers. In: Bourne GH (ed) The structure and function of muscle vol II part 2. Academic Press, New York, pp 531–619

    Google Scholar 

  • Furnestin ML (1957) Chaetognathes et zooplancton du secteur atlantique marocain. Rev Trav Inst Pêches Marit 21:1–356

    Google Scholar 

  • Ghirardelli E (1968) Some aspects of the biology of the chaetognaths. Adv Mar Biol 6:271–375

    Article  Google Scholar 

  • Goldstein MA, Burdette W (1971) Striated visceral muscle of Drosophila melanogaster. J Morphol 134:315–334

    Article  PubMed  CAS  Google Scholar 

  • Grassi GB (1883) I chaetognati. In: Engelman W (ed) Fauna flora Golf Neapel. Monogr 5, Leipzig

    Google Scholar 

  • Green CR, Bergquist PR (1982) Phylogenetic relationships within the Invertebrata in relation to the structure of septate juctions and the development of “occluding” junctional types. Cell Sci 53:279–305

    Google Scholar 

  • Halanych KM (1996) Testing hypotheses of chaetognath origins: long branches revealed by 18S ribosomal DNA. Syst Biol 45:223–246

    Article  Google Scholar 

  • Hardie J, Hawes C (1982) The three-dimensional structure of the Z-disc in insect supercontracting muscles. Tissue Cell 14:309–318

    Article  PubMed  CAS  Google Scholar 

  • Hoyle G, McAlear JH, Selverston A (1965) Mechanisms of supercontraction in a striated muscle. J Cell Biol 26:621–640

    Article  PubMed  CAS  Google Scholar 

  • Huddart H (1975) The comparative structure and function of muscle. In: Kerkut GA (ed) International series of mopographs in pure and applied biology. Zoology division 53 Pergamon, Oxford, pp 1–397

    Google Scholar 

  • Inglis WG (1983) The structure and operation of the obliquely striated supercontractile somatic muscles in Nematodes. Aust J Zool 31:677–693

    Article  Google Scholar 

  • Josephson RK (1975) Extensive and intensive factors determining the performance of striated muscles. J Exp Zool 194:135–154

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia G (1972) The “smooth” muscle of invertebrates. Boll Zool 39:159–172

    Google Scholar 

  • Lanzavecchia G, Valvassori R, Eguileor M de, Lanzavecchia P (1979) Three-dimensional reconstruction of the contractile system of the nematomorpha muscle fiber. J Ultrastruct Res 66:201–223

    Article  PubMed  CAS  Google Scholar 

  • Leyton RA, Ullrick WC (1970) Z-dise ultrastructure in scutal depressor fibers of the barnacle. Science 168:127–128

    Article  PubMed  CAS  Google Scholar 

  • Millan BM (1967) Mechanism of contraction in molluscan muscle Am Zool 7:583–591

    Google Scholar 

  • Miller TA (1975) Insect visceral muscle. In: Unsherwood PNR (ed) Insect muscle. Academic Press, New York, pp 545–598

    Google Scholar 

  • Osborne MP (1967) Supercontraction in the muscles of the blowfly larva: an ultrastructural study. J Insect Physiol 13:1471–1482

    Article  Google Scholar 

  • Pringle JWS (1972) Arthropod muscle, In: Bourne GH (ed) The structure and function of muscle, vol I part 2 Academic Press, New York, 491–541

    Google Scholar 

  • Rehkämper G, Welsch U (1985) On the fine structure of the cerebral ganglion of Sagitta (Chaetognatha). Zoomorphology 105:83–89

    Article  Google Scholar 

  • Rieger R, Tyler S (1979) The homology theorem in ultrastructure research. J Am Zool 19:655–664

    Google Scholar 

  • Rosenbluth J (1972) Obliquely striated muscle. In: Bourne GH (ed) The structure and function of muscle, vol I part 1. Academic Press, New York, pp 389–420

    Google Scholar 

  • Royuela M. Astier C, Grandier-Vazeille X, Benyamin Y, Fraile B, Paniagua R, Duvert M (2002) Immunocytochemical study of chaetognath locomotor muscles. Invertebr Biol (in press)

  • Shinn GL (1997) Chaetognatha. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol 15. Hemichordata, Chaetognatha and the invertebrate chordates. Wiley-Liss New York, pp 103–220.

    Google Scholar 

  • Telford MJ, Holland PWH (1993) The phylogenetic affinities of the chaetognaths: a molecular analysis. Mol Biol Evol 10:660–676

    PubMed  CAS  Google Scholar 

  • Telford MJ, Holland PWH (1997) Evolution of 285 ribosomal DNA in chaetognaths: duplicate genes and molecular phylogeny. J Mol Evol 44:135–144

    Article  PubMed  CAS  Google Scholar 

  • Tokioka T (1965) The taxonomical outline of Chaetognatha. Pub Seto Mar Biol Lab 12: 335–357

    Google Scholar 

  • Tsutsui I, Inoue I, Bone Q, Carré C (2000) Activation of locomotor and grasping spine muscle fibres in chaetognaths: a curious paradox. J Muscle Res Cell Motil 21:91–97

    Article  PubMed  CAS  Google Scholar 

  • Welsch U, Storch V (1983) Fine structural and enzyme histochemical observations on the epidermis and the sensory cells of Sagitta elegans (Chaetognatha). Zool Anz 210:34–43

    Google Scholar 

  • Willmer P (1990) Invertebrate relationships: patterns in animal evolution. Cambridge University Press. Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -P. Casanova.

Additional information

Communicated by S.A. Poulet, Roscoff

Published online: 21 September 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casanova, J.P., Duvert, M. Comparative studies and evolution of muscles in chaetognaths. Marine Biology 141, 925–938 (2002). https://doi.org/10.1007/s00227-002-0889-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-002-0889-3

Keywords

Navigation