Acid–base-catalyzed two-step liquefaction of empty fruit bunch lignin residue for preparation of biopolyol and high-performance biopolyurethanes

Abstract

To reduce the dependence on fossil fuel, empty fruit bunch (EFB) lignin residue, a waste material generated from second-generation lignocellulosic biomass was used for the production of biopolyol and biopolyurethanes. The acid–base-catalyzed two-step liquefaction process was carried out to drive residual lignin into value-added products. The reaction condition for the second step (base-catalyzed liquefaction) was optimized to reduce molecular weight and lower the acid number below 5 mg KOH/g for preparing more suitable biopolyol. The optimal condition was determined at 2 wt% of catalyst loading and 130 °C reaction temperature for a reaction time of 60 min. By employing the upgraded two-step liquefaction process, biopolyol with a molecular weight of 4724 g/mol, a viscosity of 1.14 Pa s and a hydroxyl number of 816 mg KOH/g was obtained from low-grade lignin. The resulting biopolyol was converted to biopolyurethane elastomer and biopolyurethane foam with p-TDI and p-MDI as isocyanate, respectively. The biopolyurethane elastomer exhibited a high temperature at 10% weight loss Td10 of 318 °C and temperature at 50% weight loss Td50 of 386 °C. Besides, the biopolyurethane foam possesses a compressive strength and density of 99 kPa and 24.8 kg/m3, which are properties comparable with petroleum-derived polyurethane.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Chen F, Lu Z (2009) Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. J Appl Polym Sci 111:508–516

    CAS  Article  Google Scholar 

  2. D’Souza J, Wong SZ, Camargo R, Yan N (2016) Solvolytic liquefaction of bark: understanding the role of polyhydric alcohols and organic solvents on polyol characteristics. ACS Sustain Chem Eng 4:851–861

    Article  CAS  Google Scholar 

  3. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102:6230–6238

    CAS  PubMed  Article  Google Scholar 

  4. El-barbary MH, Shukry N (2008) Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues. Ind Crop Prod 27:33–38

    Article  CAS  Google Scholar 

  5. El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303

    CAS  Article  Google Scholar 

  6. Erdocia X, Prado R, Corcuera MA, Labidi J (2014) Base catalyzed depolymerization of lignin: Influence of organosolv lignin nature. Biomass Bioenerg 66:379–386

    CAS  Article  Google Scholar 

  7. Fiori DE, Ley DA, Quinn RJ (2000) Effect of particle size distribution on the performance of two-component water-reducible acrylic polyurethane coatings using tertiary polyisocyanate crosslinkers. J Coatings Technol 72:63–69

    CAS  Article  Google Scholar 

  8. Hu S, Li Y (2014a) Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams. Bioresour Technol 161:410–415

    CAS  PubMed  Article  Google Scholar 

  9. Hu S, Li Y (2014b) Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: Effects of crude glycerol impurities. Ind Crop Prod 57:188–194

    CAS  Article  Google Scholar 

  10. Hyon S, Jamshidi K, Ikada Y (1997) Synthesis of polylactides with different molecular weights. Biomaterials 18:1503–1508

    CAS  PubMed  Article  Google Scholar 

  11. Javni I, Petrović ZS, Guo A, Fuller R (2000) Thermal stability of polyurethanes based on vegetable oils. J Appl Polym Sci 77:1723–1734

    CAS  Article  Google Scholar 

  12. Jena KK, Chattopadhyay DK, Raju K (2007) Synthesis and characterization of hyperbranched polyurethane–urea coatings. Eur Polym J 43:1825–1837

    CAS  Article  Google Scholar 

  13. Jo YJ, Ly HV, Kim J, Kim S, Lee E (2015) Preparation of biopolyol by liquefaction of palm kernel cake using PEG#400 blended glycerol. J Ind Eng Chem 29:304–313

    CAS  Article  Google Scholar 

  14. Jung JY, Yu J, Lee EY (2018) Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis. J Polym Environ 26:3493–3501

    CAS  Article  Google Scholar 

  15. Kim H, Kang B, Kim M, Park YM, Kim D, Lee J, Lee K (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today 93:315–320

    Article  CAS  Google Scholar 

  16. Kong X, Liu G, Curtis JM (2012) Novel polyurethane produced from canola oil based poly (ether ester) polyols: Synthesis, characterization and properties. Eur Polym J 48:2097–2106

    CAS  Article  Google Scholar 

  17. Kwon O, Yang S, Kim D, Park J (2007) Characterization of polyurethane foam prepared by using starch as polyol. J Appl Polym Sci 103:544–1553

    Article  CAS  Google Scholar 

  18. Lee JH, Lee EY (2017) Preparation of biopolyol from empty fruit bunch saccharification residue using glycerol and PEG#300 – mediated liquefaction for application to bio-polyester and bio-polyurethane production. J Wood Chem Technol 37:283–293

    CAS  Article  Google Scholar 

  19. Levin BC, Paabo M, Fultz ML, Bailey CS (1985) Generation of hydrogen cyanide from flexible polyurethane foam decomposed under different combustion conditions. Fire Mater 9:125–134

    CAS  Article  Google Scholar 

  20. Li Y, Ragauskas AJ (2012) Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol 32:210–224

    Article  CAS  Google Scholar 

  21. Li ZP, Liu BH, Arai K, Asaba K, Suda S (2004) Evaluation of alkaline borohydride solutions as the fuel for fuel cell. J Power Sources 126:28–33

    CAS  Article  Google Scholar 

  22. Liang L, Mao Z, Li Y, Wan C, Wang T, Zhang L, Zhang L (2006) Liquefaction of crop residues for polyol production. BioResources 1:248–256

    Article  Google Scholar 

  23. Lin Y, Hsieh F (1997) Water-blown flexible polyurethane foam extended with biomass materials. J Appl Polym Sci 65:695–703

    CAS  Article  Google Scholar 

  24. Lucia LA (2008) Lignocellulosic biomass: A potential feedstock to replace petroleum. BioResources 3:981–982

    Google Scholar 

  25. Luo X, Mohanty A, Misra M (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind Crop Prod 47:13–19

    CAS  Article  Google Scholar 

  26. Maldas D, Shiraishi N (1996) Liquefaction of wood in the presence of polyol using NaOH as a catalyst and its application to polyurethane foams. Int J Polym Mater 33:61–71

    CAS  Article  Google Scholar 

  27. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    CAS  Article  Google Scholar 

  28. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    CAS  Article  Google Scholar 

  29. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41

    CAS  Article  Google Scholar 

  30. Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem-Eur J 17:5939–5948

    CAS  PubMed  Article  Google Scholar 

  31. Saunders KJ (1988) Polyurethanes. Organic polymer chemistry. Springer, Dordrecht, pp 358–387

    Google Scholar 

  32. Strassberger Z, Tanase S, Rothenberg G (2014) The pros and cons of lignin valorisation in an integrated biorefinery. RSC Adv 4:25310–25318

    CAS  Article  Google Scholar 

  33. Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846

    CAS  Article  Google Scholar 

  34. Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP (2008) Effect of foam density on the properties of water blown rigid polyurethane foam. J Appl Polym Sci 108:1810–1817

    CAS  Article  Google Scholar 

  35. Tran MH, Lee EY (2018) Green Preparation of Bioplastics Based on Degradation and Chemical Modification of Lignin Residue. J Wood Chem Technol 38:460–478

    CAS  Article  Google Scholar 

  36. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32

    CAS  Article  Google Scholar 

  37. Xiao W, Niu W, Yi F, Liu X, Han L (2013) Influence of crop residue types on microwave-assisted liquefaction performance and products. Energy Fuels 27:3204–3208

    CAS  Article  Google Scholar 

  38. Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 27:3204–3208

    Google Scholar 

  39. Xu J, Jiang J, Hse C, Shupe TF (2012) Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chem 14:2821–2830

    CAS  Article  Google Scholar 

  40. Ye L, Zhang J, Zhao J, Tu S (2014) Liquefaction of bamboo shoot shell for the production of polyols. Bioresour Technol 153:147–153

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Yip J, Chen M, Szeto YS, Yan S (2009) Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents. Bioresour Technol 100:6674–6678

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Yu F, Liu Y, Pan X, Lin X, Liu C, Chen P, Ruan R (2006) Liquefaction of corn stover and preparation of polyester from the liquefied polyol. Appl Biochem Biotechnol 130:574–585

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the R&D Program of the Ministry of Trade, Industry and Energy (MOTIE)/Korea Evaluation Institute of Industrial Technology (KEIT) (Project No. 10049675). This research was also supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2015M3D3A1A01064882).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eun Yeol Lee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Tran, M.H. & Lee, E.Y. Acid–base-catalyzed two-step liquefaction of empty fruit bunch lignin residue for preparation of biopolyol and high-performance biopolyurethanes. Wood Sci Technol (2021). https://doi.org/10.1007/s00226-021-01267-9

Download citation