Skip to main content
Log in

Density and density profile changes in birch and spruce caused by thermo-hydro treatment measured by X-ray computed tomography

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Birch and spruce samples were scanned using X-ray computed tomography (CT) to determine changes in the density and density profile caused by thermo-hydro treatment (THT). Small-dimension wood blocks were subjected to treatment at three different temperatures (160 °C, 170 °C and 180 °C) for 1 h and scanned before and after treatment. Identical acquisition and analysis procedures were used to evaluate the changes in approximate mean density and radial density profile of oven-dried untreated and treated material. The X-ray CT scans enabled measuring of the changes in wood density after THT. The results confirm that there were similar tendencies in the total density decrease with increasing temperature. However, variations in density changes between the earlywood (EW) and latewood (LW) of birch and spruce were found. A correlation of the radial density profiles of treated versus untreated specimens showed a similar density decrease in EW and LW in birch wood and inconsistent reductions in spruce wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altgen M, Willems W, Militz H (2016) Wood degradation affected by process conditions during thermal modification of European beech in a high pressure reactor system. Eur J Wood Prod 74(5):653–662

    Article  CAS  Google Scholar 

  • Biziks V, Andersons B, Sansonetti E, Andersone I, Militz H, Grinins J (2015) One-stage thermos-hydro treatment (THT) of hardwoods: an analysis of form stability after five soaking-drying cycles. Holzforschung 69(5):563–573

    Article  CAS  Google Scholar 

  • Boone M, De Witte Y, Dierick M, Van den Bulcke J, Vlassenbroeck J, Van Hoorebeke L (2009) Practical use of the modified Bronnikov algorithm in micro-CT. Nucl. Instrum. Methods Phys. Res Sect B Beam Interact Mater At 267:1182–1186

    CAS  Google Scholar 

  • Boonstra MJ, Van Acker J, Tjeerdsma BF, Kegel EV (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann Sci 64(7):679–690

    Article  Google Scholar 

  • Bouriaud O, Leban JK, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 256(6):651–660

    Article  Google Scholar 

  • Brabant L, Vlassenbroeck J, De Witte Y, Cnudde V, Boone MN, Dewanckele J, Van Hoorebeke L (2011) Three-dimensional analysis of high-resolution X-ray computed tomography data with Morpho+. Microsc Microanal 17:252–263

    Article  PubMed  CAS  Google Scholar 

  • Cuny EH, Rathgeber CBK, Frank D, Fonti P, Fournier M (2014) Kinetics of tracheid development, explain conifer tree-ring structure. New Phytol 203(4):1231–1241

    Article  PubMed  Google Scholar 

  • De Ridder M, Van den Bulcke J, Vansteenkiste D, Van Loo D, Dierick M, Masschaele B, De Witte Y, Mannes D, Lehmann E, Beeckman H, Van Hoorebeke L, Van Acker J (2011) High-resolution proxies for wood density variations in Terminalia superba. Ann Bot 107(2):293–302

    Article  PubMed  Google Scholar 

  • De Witte Y, Boone M, Vlassenbroeck J, Dierick M, Van Hoorebeke L (2009) Bronnikov-aided correction for X-ray computed tomography. J Opt Soc Am A Opt Image Sci Vis 26:890–894

    Article  PubMed  Google Scholar 

  • Dierick M, Van Loo D, Masschaele B, Boone M, Van Hoorebeke L (2010) A LabVIEW® based generic CT scanner control software platform. J X-ray Sci Technol 18:451–461

    CAS  Google Scholar 

  • Dierick M, Van Loo D, Masschaele B, Van den Bulcke J, Van Acker J, Cnudde V, Van Hoorebeke L (2014) Recent scanner developments at UGCT. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 324:35–40

    Article  CAS  Google Scholar 

  • Dietrichs HH, Sinner H, Puls J (1978) Potential of steaming hardwoods and straw for feed and food production. Holzforschung 32:193–199

    Article  CAS  Google Scholar 

  • Freyburger C, Longuetaud F, Mothe F, Constant T, Leban JM (2009) Measuring wood density by means of X-ray computed tomography. Ann Forest Sci 66:804 (p:1–9)

    Article  Google Scholar 

  • Fritts HC (2001) Tree rings and climate. The Blackburn Press, London

    Google Scholar 

  • Gilmore AR, Metcalf GE, Boggess WR (1959) Specific gravity of shortleaf pine and loblolly pine in southern Illinois. J For 59:894–896

    Google Scholar 

  • González-Peña MM, Curling SF, Hale MDC (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym Degrad Stabil 94:2184–2193

    Article  CAS  Google Scholar 

  • Grinins J, Andersons B, Biziks V, Andersone I, Dobele G (2013) Analytical pyrolysis as an instrument to study the chemical transformations of hydrothermally modified wood. J Anal Appl Pyrol 103:36–41

    Article  CAS  Google Scholar 

  • Guilley E, Herve JC, Nepveu G (2004) The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl. For Ecol Manag 189:111–121

    Article  Google Scholar 

  • Hamada J, Pétrissans A, Mothe F, Pétrissans M, Gerardin P (2017) Intraspecific variation of European oak wood thermal stability according to radial position. Wood Sci Technol 51:785–794

    Article  CAS  Google Scholar 

  • Izekor DN, Fuwape JA, Oluyege AO (2010) Effects of density on variations in the mechanical properties of plantation grown Tectona grandis wood. Arch Appl Sci Res 2(6):113–120

    Google Scholar 

  • Klüppel A, Mai C (2013) The influence of curing conditions on the chemical distribution in wood modified with thermosetting resins. Wood Sci Technol 47:643–658

    Article  CAS  Google Scholar 

  • Lindgren LO (1991) The accuracy of medical CAT-scan images for non-destructive density measurements in small volume elements within solid wood. Wood Sci Technol 25:425–432

    Google Scholar 

  • Mantanis GI, Young RA, Rowell RM (1994) Part I. Swelling of wood. Wood Sci Technol 28:119–134

    Article  CAS  Google Scholar 

  • Meincken M, du Plessis A (2013) Visualising and quantifying thermal degradation of wood by computed tomography. Eur J Wood Prod 71:387–389

    Article  Google Scholar 

  • Mull RT (1984) Mass estimates by computed tomography: physical density from CT numbers. Am J Roentgenol 143:1101–1104

    Article  CAS  Google Scholar 

  • Niemz P (1993) Physik des Holzes und der Holzwerkstoffe (Physics of wood and wood-based products) (in German). DRW-Verlag, Leinfelden-Echterdingen

    Google Scholar 

  • Pang S (2002) Predicting anisotropic shrinkage of soft wood. Part 1: theories. Wood Sci Technol 36:75–91

    Article  CAS  Google Scholar 

  • Quirk JT (1984) Shrinkage and related properties of Douglas-fir cell walls. Wood Fiber Sci 16:115–133

    Google Scholar 

  • Rathgeber CBK, Decoux V, Leban JM (2006) Linking intra-tree ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann For Sci 63:699–706

    Article  Google Scholar 

  • Rautkari L, Kutnar A, Hughes M, Kamke F (2010) Wood surface densification using different methods. In: 11th World conference on timber engineering, Riva del Garda, Italia, 20–24 June 2010, pp 647–648

  • Sedighi-Gilani M, Boone NM, Mader K, Schwarze FWMR (2014) Synchotron X-ray macro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes. J Struct Biol 187:149–157

    Article  PubMed  Google Scholar 

  • Shchupakivskyy R, Clauder L, Linke N, Pfriem A (2014) Application of high-frequency densitometry to detect changes in early- and latewood density of oak (Quercus robur L.) due to thermal modification. Eur J Wood Prod 72(1):5–10

    Article  Google Scholar 

  • Steffenrem A, Kvaalen H, Sigm K, Høibø D, Høibø O (2014) A high throughput X-ray based method for measurements of relative wood density from unprepared increment cores from Piceas abies. Scand J For Res 29(5):506–514

    Article  Google Scholar 

  • Vlassenbroeck J, Dierick M, Masschaele B, Cnudde V, Van Hoorebeke L, Jacobs P (2007) Software tools for quantification of X-ray microtomography at the UGCT. Nucl Instrum Methods Phys Res A 580:442–445

    Article  CAS  Google Scholar 

  • Wong AHH, Wilkes J, Heather WA (1983) Influence of wood density and extractive content on the decay of the heartwood of Eucalyptus delegatensis R.T. Baker. J Inst Wood Sci 54:261–263

    Google Scholar 

  • Yildiz S, Gezer D, Yildiz U (2006) Mechanical and chemical behavior of spruce wood modified by heat. Build Environ 41:1762–1766

    Article  Google Scholar 

Download references

Acknowledgements

This project is part of the U4 Network sponsored by the DAAD program “Strategic Partnership” and the Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimirs Biziks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biziks, V., Van Acker, J., Militz, H. et al. Density and density profile changes in birch and spruce caused by thermo-hydro treatment measured by X-ray computed tomography. Wood Sci Technol 53, 491–504 (2019). https://doi.org/10.1007/s00226-018-1070-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-018-1070-6

Navigation