Skip to main content
Log in

Structure, chemical reactivity and solubility of lignin: a fresh look

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

This is a review of historical and modern literature data on the structure versus properties of wood lignin in view of the concepts developed by the authors based on their own research. Changes in the structure of lignin and related changes in its chemical reactivity during alkaline wood pulping are assessed based on the comparison of the structures of lignin at three kinetically distinct stages of delignification: initial, bulk and final. Lignin gradually moves from a solid to a liquid phase during the pulping process; therefore, structures of native, dissolved and residual lignin are elucidated and compared. The emphasis is on changes in the molecular weight distribution and content of alkylarylether bonds, and functional groups, in particular phenolic hydroxyls. For comparison, splitting rates for α- and β-alkylarylether bonds in both phenolic and non-phenolic lignin model compounds are analyzed. Based on the comparative analysis of the experimental data, it is suggested that native lignin in wood consists mainly of three distinct fractions that are different in chemical reactivities of alkylarylether bonds. This phenomenon results in three kinetically distinct stages of the pulping process. Wood delignification is essentially a process of lignin functionalization followed by its dissolution. The functionalization, i.e., formation of additional functional groups in the macromolecule, continues until it reaches the level sufficient for lignin dissolution under chosen conditions, and then, delignification occurs. At the bulk stage of pulping, the rate of delignification is directly proportional to the degree of functionalization. The data characterizing the effect of redox reactions on the structure and chemical reactivity of lignin in alkali–anthraquinone pulping are analyzed in detail in view of their general importance for our understanding of the chemical reactivity of lignin. Results of polarographic studies of numerous representative lignin model compounds (> 70 samples) and lignin samples, including chemically changed lignins, are compiled, and a diagram of reduction potentials of polarographically active functional groups in lignin is drawn. From a comparison of redox properties of lignin and 32 pulping additives, criteria for selection of potential alkaline pulping catalysts are derived. Solubility belongs to basic properties of polymers, lignin included, and all methods of delignification of plant materials can be essentially reduced to solid polymer functionalization followed by its dissolution. Factors contributing to lignin solubility are analyzed, including such characteristics as molecular weight, temperature, liquid–solid ratio and ionic strength. Based on the analyzed data, a uniform scale of solubility for different lignin types is proposed, and formulae for calculating lignin solubility in alkaline media are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agarwal UP, Atalla RH (1986) In situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana. Planta 169(3):325–332

    Article  CAS  PubMed  Google Scholar 

  • Algar WH, Farrington A, Jessup B, Vanderhock N (1979) The mechanism of soda-quinone pulping. Appita 33(1):33–37

    CAS  Google Scholar 

  • Amos LW, Eckert RC (1982) Influence of methylation on the solubility and efficiency of anthraquinone in soda pulping. In: Proceedings of canadian wood chem symposium Niagara Falls, NY, pp 7–10

  • Andreyev VI, Vasilieva TM, Grigoriev GP, Vlasova KI (1974) Study on interaction of dioxane lignin with aqueous solutions of sodium hydroxide by calorimetry. In: Chemistry and use of lignin, Zinatne, Riga, pp 129–133

  • Asikkala J, Tamminen T, Argyropoulos DS (2012) Accurate and reproducible determination of lignin molar mass by acetobromination. J Agric Food Chem 60:8968–8973

    Article  CAS  PubMed  Google Scholar 

  • Atalla RH, Agarwal UP (1985) Raman microprobe evidence for lignin orientation in cell walls of native woody tissue. Science 227(4687):636–638

    Article  CAS  PubMed  Google Scholar 

  • Balakshin MYu, Capanema EA, Chen C-L, Gratzl JS, Gracz H (2000) The use of 2D NMR spectroscopy on structural analysis of residual and technical lignins. In: Proceedings of 6th European workshop on lignocellulosics and pulp, Bordeaux, France, pp 11–14

  • Balakshin MYu, Capanema EA, Chang H (2008) Recent advances in the isolation and analysis of lignins and lignin-carbohydrate complexes. In: Hu TQ (ed) Characterization of lignocellulosic materials. Blackwell Publishing Ltd, Oxford, pp 148–170

    Chapter  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. In: Campbell A, Lichten M, Schupbach G (eds) Annual review of genetics. Annual reviews 44: 337–363

  • Bond AM (1980) Modern polarographic methods in analytical chemistry. M Dekker, New York

    Book  Google Scholar 

  • Brunow G, Miksche G (1976) Some reactions of lignin in kraft and polysulfide pulping. Appl Polym Symp 28:1155–1168

    CAS  Google Scholar 

  • Brunow G, Poppius KA (1981) Kinetic study on the mechanism of β-O-4 ether cleavage in soda-anthraquinone pulping. Paperi ja Puu 63(12):783–785

    CAS  Google Scholar 

  • Chiang VL, Kolppo K, Stokke DD (1989) Structure changes of lignin in kraft and acid sulphite delignification of western hemlock. In: Proceedings of international symposium on wood and pulping chemistry, Raleigh, NC, pp 593–597

  • Chiang VL, Yu J, Eckert RC (1990) Isothermal reaction kinetics of kraft delignification of Douglas-fir. J Wood Chem Technol 10(3):293–310

    Article  CAS  Google Scholar 

  • Crestini C (2014) Lignin structure: a revisitation of current paradigms through NMR analysis. In: Proceedings of 13th European workshop on lignocellulosics and pulp, Seville, Spain, pp 59–62

  • Crestini C, Melone F, Sette M, Saladino R (2011) Milled wood lignin: a linear oligomer. Biomacromolecules 12(11):3928–3935

    Article  CAS  PubMed  Google Scholar 

  • Dimmel D, Gellerstedt G (2010) Chemistry of alkaline pulping. In: Heitner C, Dimmel DR, Schmidt JA (eds) Lignin and lignans. Advances in chemistry series. CRC Press, Boca Raton, pp 349–391

    Chapter  Google Scholar 

  • Dimmel DR, Schuller LF (1986a) Structural/reactivity studies (I): soda reactions of lignin model compounds. J Wood Chem Technol 6(4):535–564

    Article  CAS  Google Scholar 

  • Dimmel DR, Schuller LF (1986b) Structural/reactivity studies (II): reactions of lignin model compounds with pulping additives. J Wood Chem Technol 6(4):565–590

    Article  CAS  Google Scholar 

  • Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33(2):259–276

    Article  CAS  Google Scholar 

  • Dudkin MS, Gromov VS (eds) (1991) Hemicelluloses. Zinatne, Riga

    Google Scholar 

  • Eckert RC, Amos LW (1980) Catalysis of alkaline pulping by fluorenone. Tappi J 63(11):89–93

    CAS  Google Scholar 

  • Eckert RC, Amos LW (1981) Prediction of chemical structures leading to catalysis of alkaline pulping. Tappi J 64(6):123–124

    CAS  Google Scholar 

  • Eckert RC, Amos LW (1982) Influence of hydrophilicity on the delignification efficiency of anthraquinone derivatives. J Wood Chem Technol 2(1):57–71

    Article  CAS  Google Scholar 

  • Evstigneyev EI (2001) Structural changes in lignin during alkaline wood pulping and their effect on the rate of delignification and on properties of pulp. D.Sc. thesis, St-Petersburg Forest Technical Academy, St-Petersburg, Russia

  • Evstigneyev EI (2003) Basic theory of alkaline pulping. In: Pulp and paper technology. Politechnica, St-Petersburg, Russia 2(2): 7–16

  • Evstigneyev EI (2009) Chemical reactivity of lignin in reactions of electrochemical reduction. In: IV national conference on progress in chemistry and chemical technology of plant biomass, Barnaul, Russia, vol 1, pp 80–83

  • Evstigneyev EI (2010) Specific features of lignin dissolution in aqueous and aqueous-organic media. Russ J Appl Chem 83(3):509–513

    Article  CAS  Google Scholar 

  • Evstigneyev EI (2011) Factors affecting lignin solubility. Russ J Appl Chem 84(6):1040–1045

    Article  CAS  Google Scholar 

  • Evstigneyev EI (2012) On the structure of native lignin. Bull St-Petersburg Forest Technical Academy (Izvestiya SPBLTA), vol 198, pp 164–172

  • Evstigneyev EI (2013) Oxidation of hydrolysis lignin with hydrogen peroxide in acid solutions. Russ J Appl Chem 86(2):258–265

    Article  CAS  Google Scholar 

  • Evstigneyev EI (2014) Electrochemical reactions of lignin: a review. Khimija Rastitel nogo Syr’ja. Chem Plant Resour 3:5–42

    Google Scholar 

  • Evstigneyev E (2018) Selective depolymerization of lignin: assessment of the yield of monomeric products. J Wood Chem Technol 1:2–3. https://doi.org/10.1080/02773813.2018.1500607

    Article  CAS  Google Scholar 

  • Evstigneyev EI, Rusakov AE (1990) The use of high performance liquid chromatography for studying lignin. In: Proceedings of 1st European workshop on lignocellulosics and pulp. Hamburg, Germany, pp 327–332

  • Evstigneyev EI, Shalimova TV (1985a) Redox properties, catalytic activity and stabilizing effect of some quinones in soda pulping. 1. Reduction potentials and solubility. Wood Chem (Riga) 1:50–54

    Google Scholar 

  • Evstigneyev EI, Shalimova TV (1985b) Redox properties, catalytic activity and stabilizing effect of some quinones in soda pulping. 1. Effect on pulping. Wood Chem (Riga) 1:55–60

    Google Scholar 

  • Evstigneyev EI, Shalimova TV (1987) Correlation of redox properties and catalytic activity of anthraquinone derivatives in sulfate pulping. Coll Works VNIIB VNPOBumprom, pp 27–32

  • Evstigneyev EI, Rusakov AE, Shalimova TV, Zakharov VI (1987a) Molecular mass distribution in lignin at various stages of soda and soda-AQ pulping. Wood Chem (Riga) 2:51–55

    Google Scholar 

  • Evstigneyev EI, Rusakov AE, Shalimova TV, Zakharov VI (1987b) Study on changes in molecular mass distribution in spruce Björkman lignin under the conditions of soda, soda-AQ and kraft pulping. In: Abstract of 7 conference chemistry and use of lignin. Riga, Latvia (U.S.S.R.), pp 88–89

  • Evstigneyev EI, Maiyorova ED, Platonov AYu (1990) Alkaline delignification of wood and lignin functionalization. Wood Chem (Riga) 6:41–46

    Google Scholar 

  • Evstigneyev E, Maiyorova H, Platonov A (1991) Lignin functionalization and reactivity in alkaline pulping. In: Proceedings of 6th international symposium on wood and pulping chemistry. Melbourne, Australia, vol 2, pp 131–138

  • Evstigneyev E, Maiyorova H, Platonov A (1992a) Lignin functionalization and the alkaline delignification rate. Tappi J 75(5):177–182

    Google Scholar 

  • Evstigneyev E, Shevchenko SM, Apushkinsky AG, Semenov SG (1992b) Electrochemistry of lignin model p-quinone methides. Ligno-cellulosics: science, technology. development and use. Ellis Horwood, New York, pp 657–670

    Google Scholar 

  • Evstigneyev E, Maiyorova H, Kurzin A, Platonov A (1993) About native lignin model. In: Proceedings of 7th International symposium on wood and pulping chemistry. Beijing, China, vol 3, pp 25–31

  • Evstigneyev E, Kurzin A, Platonov A, Maiyorova H (1994) About residual lignin nature. In: Ext Abstract 3rd European workshop on lignocellulosics and pulp. Stockholm, pp 232–233

  • Evstigneyev EI, Kurzin AV, Platonov AYu, Maiyorova ED (1996) Freudenberg lignin as a model for studying alkaline delignification of wood. Zhurn Prikl Khim 69(1):148–153

    Google Scholar 

  • Evstigneyev E, Maiyorova H, Platonov A (1999) Polarographically active structural fragments of lignin. I. Monomeric model compounds. J Wood Chem Technol 19(4):379–407

    Article  CAS  Google Scholar 

  • Evstigneyev E, Shevchenko S, Maiyorova H, Platonov A (2004) Polarographically active structural fragments of lignin II Dimeric model compounds and lignins. J Wood Chem Technol 24(3):263–278

    Article  CAS  Google Scholar 

  • Evstigneyev EI, Yuzikhin OS, Gurinov AA, Ivanov AYu, Artamonova TO, Khodorkovskiy MA, Bessonova EA, Vasilyev AV (2015) Chemical structure and physicochemical properties of oxidized hydrolysis lignin. Russ J Appl Chem 88(8):1295–1303

    Article  CAS  Google Scholar 

  • Evstigneyev EI, Yuzikhin OS, Gurinov AA, Ivanov AYu, Artamonova TO, Khodorkovskiy MA, Bessonova EA, Vasilyev AV (2016) Study of structure of industrial acid hydrolysis lignin, oxidized in the H2O2–H2SO4 system. J Wood Chem Technol 36(4):259–269

    Article  CAS  Google Scholar 

  • Evstigneyev E, Kalugina AV, Ivanov AYu, Vasilyev AV (2017) Contents of α-O-4 and β-O-4 bonds in native lignin and isolated lignin preparations. J Wood Chem Technol 37(4):294–306

    Article  CAS  Google Scholar 

  • Evstigneyev EI, Mazur AS, Kalugina AV, Pranovich AV, Vasilyev AV (2018) Solid-state 13C CP/MAS NMR for alkyl-O-aryl bonds determination in lignin preparations. J Wood Chem Technol 38(4):137–148

    Article  CAS  Google Scholar 

  • Evtuguin DV, Amado FML (2003) Application of electrospray ionization mass spectrometry to the elucidation of the primary structure of lignin. Macromol Biosci 3:339–343

    Article  CAS  Google Scholar 

  • Faulon JL (1994) Stochastic generator of chemical structure. 1. Application to the structure elucidation of large molecules. J Chem Inf Comput Sci 34(5):1204–1218

    Article  CAS  Google Scholar 

  • Faulon JL, Hatcher PG (1994) Is there any order in the structure of lignin? Energy&Fuels 8(2):402–407

    CAS  Google Scholar 

  • Favis BD, Goring DAI (1984) A model for the leaching of lignin macromolecules from pulp fibers. J Pulp Pap Sci 10(5):139–143

    CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood: Chemistry, ultrastructure, reactions. Berlin-NY, Walter de Gruyter [Quoted pages refer to Russian translation: Фeнгeл Д, Beгeнep Г Дpeвecинa Xимия, yльтpacтpyктypa, peaкции Пep c aнгл M: Лecн пpoм-cть, 1988]

  • Freudenberg K (1965) Lignin: its constitution and formation from p-hydroxycinnamyl alcohols. Science 148(3670):595–600

    Article  CAS  PubMed  Google Scholar 

  • Galkin MV, Samec JSM (2016) Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. Chemsuschem 9:1544–1558

    Article  CAS  PubMed  Google Scholar 

  • Gellerstedt G (1996) Chemical structure of pulp components. In: Dence CW, Reeve DW (eds) Pulp bleaching principles and practice. Tappi Press, Atlanta, pp 93–111

    Google Scholar 

  • Gellerstedt G, Al-Adjani WW (1998) The influence on bleachability of changes in pulping chemistry. In: Proceedings of 5th European workshop on lignocellulosics and pulp Aveiro, Portugal, pp 547–550

  • Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 201–224

    Chapter  Google Scholar 

  • Gellerstedt G, Lindfors E (1984a) Structural changes in lignin during kraft cooking. Part 4. Phenolic hydroxyl groups in wood and kraft pulps. Svensk Papperstidn 87(15):R115–R118

    CAS  Google Scholar 

  • Gellerstedt G, Lindfors EL (1984b) Structural changes in lignin during kraft pulping. Holzforschung 38(3):151–158

    Article  CAS  Google Scholar 

  • Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14(4):241–266

    Article  CAS  Google Scholar 

  • Gierer J (1982a) The chemistry of delignification. A general concept. Part I. Holzforschung 36(1):43–51

    Article  CAS  Google Scholar 

  • Gierer J (1982b) The chemistry of delignification. A general concept. Part II. Holzforschung 36(2):55–64

    Article  CAS  Google Scholar 

  • Gierer J, Lindenberg O (1980) Reaction of lignin during sulfate pulping. Part XIX. Isolation and identification of new dimmers from spent sulfate liquor. Acta Chem Scand 34(3):161–170

    Article  Google Scholar 

  • Gierer J, Ljunggren S (1979) The reaction of lignin during sulfate pulping. 17. Kinetic treatment of the formation and competing reactions of quinone methide intermediates. Svensk Papperstidn 82(17):503–512

    CAS  Google Scholar 

  • Gierer J, Ljunggren S (1983) Comparative studies of the participation of different neighboring groups in the alkaline cleavage of β-aryl ether bonds in lignin. Svensk Papperstidn 86(9):R100–R106

    CAS  Google Scholar 

  • Gierer J, Ljunggren S, Ljungquist P, Noren I (1980) The reaction of lignin during sulfate pulping. 18. The significance of α-carbonyl groups for the cleavage of β-aryl ether structure. Svensk Papperstidn 83(3):75–82

    CAS  Google Scholar 

  • Guizani C, Lachenal D (2017) Controlling the molecular weight of lignosulfonates by an alkaline oxidative treatment at moderate temperatures and atmospheric pressure: a size-exclusion and reverse-phase chromatography study. Int J Mol Sci 18(12):2520–2538

    Article  CAS  PubMed Central  Google Scholar 

  • Gullichsen J (1999) Fiber line operations. In: Gullichsen J, Paulapuro H (eds) Papermaking science and technology series, Yväskylä: Finnish Paper Engineers’ Association and TAPPI, Fapet Oy, Book 6, Chapter 2

  • Hansen CM, Björkman A (1998) The ultrastructure of wood from a solubility parameter point of view. Holzforschung 52(4):335–344

    Article  CAS  Google Scholar 

  • Heifetz LYa, Bezugly VD (1969) Polarography of anthraquinone and its derivatives. In: Organic intermediates and dyes. Chemistry of anthraquinone. Khimiya, Moscow, Russia, vol 4, pp 164–193

  • Helm RF (2000) Lignin-polysaccharide interactions in woody plants. In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological, and materials perspectives, vol 742. ACS Symp Series, Washington, pp 161–171

    Chapter  Google Scholar 

  • Hergert HL, Pye EK (1993) Recent history of organosolv pulping. In: Proceedings of 2nd international technical conference on PapFor-93. St Petersburg, Russia, pp 79–100

  • Hulanicky A, Masson MR (1987) Reactions of acids and bases in analytical chemistry. E Horwood, Chichester

    Google Scholar 

  • Irzhak VI, Rosenberg BA, Enikolopyan NS (1979) Web polymers: synthesis, structure, properties. Nauka, Moscow

    Google Scholar 

  • Kärkäs MD, Matsuura BS, Monos TM, Magallanes G, Stephenson CRJ (2016) Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Org Biomol Chem 14:1853–1914

    Article  CAS  PubMed  Google Scholar 

  • Karmanov AP (2004) Self-organization and structure of lignin. Yekaterinburg

  • Kleinert TN (1966) Mechanisms of alkaline delignification. I. The overal reaction pattern. Tappi J 49(2):53–57

    CAS  Google Scholar 

  • Kondo R, Sarkanen KV (1984) Kinetics of lignin and hemicellulose dissolution during the initial stage alkaline pulping. Holzforschung 38(1):31–36

    Article  CAS  Google Scholar 

  • Kondo R, Tsutsumi Y, Imamura H (1987) Kinetics of β-aryl ether cleavage of phenolic syringyl type lignin model compounds in soda and kraft systems. Holzforschung 41(2):83–88

    Article  CAS  Google Scholar 

  • Kringstad KP, Mörck R (1983) 13C-NMR spectra of kraft lignins. Holzforschung 37(5):237–244

    Article  CAS  Google Scholar 

  • Kurzin AV, Platonov AYu, Evstigneyev EI Mayorova ED (1997) Nucleophilicity and basicity of phenols in aminolysis of their acetates with piperidine. Zhurn Obsch Khim 67(9):1568–1571

    Google Scholar 

  • Laurichesse S, Averous L (2014) Chemical modification of lignins: towards biobased polymers. Progr Polymer Sci 39:1266–1290

    Article  CAS  Google Scholar 

  • Lawoko M, Berggren R, Berthold F, Henriksson G, Gellerstedt G (2004) Changes in the lignin-carbohydrate complex in softwood kraft pulp during kraft and oxygen delignification: lignin-polysaccharide networks. II. Holzforschung 58:603–610

    Article  CAS  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin-carbohydrate complexes in wood and chemical pulps. Biomacromolecules 6:3467–3473

    Article  CAS  PubMed  Google Scholar 

  • Lindberg O (1979) Studies on the chemistry of delignification in alkaline media. Chem Commun Univ Stockholm 6:1–51

    Google Scholar 

  • Lindenfors S (1980) Additives in alkaline pulping—What reduces what? Svensk Papperstidn 83(6):165–173

    CAS  Google Scholar 

  • Lindner A, Wegener G (1900) Characterization of lignins from organosolv pulping according to the Organocell process. Part 3. Molecular weight determination and investigation of fractions isolated by GPC. J Wood Chem Technol 10(3):331–350

    Article  Google Scholar 

  • Lindner A, Wegener G (1988) Characterization of lignins from organosolv pulping according to the Organocell process. Part 1. Elemental analysis, nonlignin portions and functional groups. J Wood Chem Technol 8(3):323–340

    Article  CAS  Google Scholar 

  • Liu C-J (2012) Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly. Mol Plant 5:304–317

    Article  CAS  PubMed  Google Scholar 

  • Ljunggren S (1980) The significance of aryl ether cleavage in kraft delignification of softwood. Svensk Papperstidn 83(13):363–369

    CAS  Google Scholar 

  • Lora J (2008) Industrial commercial lignins: sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 225–241

    Chapter  Google Scholar 

  • Luner P, Roseman G (1986) Monomolecular film properties of isolated lignins. Holzforschung 40(Suppl.):61–66

    CAS  Google Scholar 

  • Magalhaes Silva Moura JC, Valencise Bonine CA, de Oliveira Fernandes Viana J, Dornelas M C, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52(4):360–376

  • Maiyorova H, Platonov A, Evstigneyev E (1995) About significance of nonphenolic lignin structure in alkaline pulping with anthraquinone. In: Proceedings of 8th international symposium on wood and pulping chemistry Helsinki, Finland, vol 2, pp 291–296

  • Mänsson P (1983) Quantitative determination of phenolic and total hydroxyl groups in lignins. Holzforschung 37(3):143–146

    Article  Google Scholar 

  • Maunu SL (2002) NMR studies of wood and wood products. Progr Magn Reson Spectrosc 40:151–174

    Article  CAS  Google Scholar 

  • Metzger JO, Bicke O, Faix O, Tuszynski W, Angermann R, Karas M, Strupat K (1992) Matrix-assisted laser desorption mass spectrometry of lignins. Angew Chem Int Ed Eng 31(6):762–764

    Article  Google Scholar 

  • Mörck R, Yoshida H, Kringstad KP, Hatakeyama H (1986) Fractionation of kraft lignin by successive extaction with organic solvents. Holzforschung 40(suppl):51–60

    Google Scholar 

  • Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol 37:190–200

    Article  CAS  PubMed  Google Scholar 

  • Niemelä K (1990) Low-molecular-weight organic compounds in birch kraft black liquor. Ann Acad Sci Fennica Series A II Chemica 229:1–142

    Google Scholar 

  • Nimz HH (1995) Analytical methods in wood, pulping and bleaching chemistry. In: Proceedings of 8th international symposium on wood and pulp chemistry Helsinki, Finland, vol 1, pp 1–32

  • Nomura Y, Nakamura M (1978) Studies on quinone additive cooking. 1. Effect of quinone addition on alkaline cooking. Jpn Tappi 32(12):713–721

    Article  CAS  Google Scholar 

  • Obst J (1983) Kinetics of alkaline cleavage of β-aryl ether bonds in lignin models: significance to delignification. Holzforschung 37(1):23–28

    Article  CAS  Google Scholar 

  • Pedersen JA (1973) Electron spin resonance studies of oxidative processes of quinones and hydroquinones in alkaline solution. Formation of primary and secondary semiquinone radicals. J Chem Soc Perkin Trans Part 2(4):424–431

    Article  Google Scholar 

  • Pilyugina LG, Haponen IL, Vasilieva TM, Mischenko KP (1974) Comparison of thermodynamic characteristics of separated lignins. Chemistry and use of lignin. Zinatne, Riga, pp 113–122

    Google Scholar 

  • Rabinovich ML (2009) Wood hydrolysis industry in the Soviet Union and Russia: What can be learned from history? In: Rautakivi A (ed) Oral presentations, Proceedings of NWBC 2009, Helsinki, Finland, 2–4 September, pp 111–120

  • Rabinovich ML (2010) Wood hydrolysis industry in the Soviet Union and Russia: a mini-review. Cellulose Chem Technol 44(4–6):173–186

    CAS  Google Scholar 

  • Radotić K, Simić-Krstić J, Jeremić M, Trifunović MA (1994) Study of lignin formation at the molecular level by scanning tunneling microscopy. Biophys J 66(6):1763–1767

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis M, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843-1–1246843-10

    Article  CAS  Google Scholar 

  • Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83

    Article  CAS  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Christensen JH, Boerjan W (2004) Lignins: natural polymer from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3(1):29–60

    Article  CAS  Google Scholar 

  • Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55:8164–8215

    Article  CAS  Google Scholar 

  • Robert DR, Bardet M, Gellerstedt G, Lindfors E-L (1984) Structural changes in lignin during kraft cooking. Part 3. On the structure of dissolved lignins. J Wood Chem Technol 4(3):239–263

    Article  CAS  Google Scholar 

  • Sakakibara A (1991) Chemistry of lignin. In: Hon DN-S, Shirashi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 111–175

    Google Scholar 

  • Santos RB, Jameel H, H-m Chang, Hart PW (2013) Impact of lignin and carbohydrate chemical structures on degradation reactions during hardwood kraft pulping processes. BioResources 8(1):158–171

    Article  Google Scholar 

  • Sarkanen KV, Ludwig CH (eds) (1971) Lignins: Occurrence, Formation, and Reactions, Wiley, NY [Quoted pages refer to Russian translation: Лигнины Cтpyктypa, cвoйcтвa и peaкции/Пoд peд КB Capкaнeнa, КX Людвигa Пep c aнгл M: Лecн пpoм-cть, 1975]

  • Sen S, Patil S, Argyropoulos DS (2015) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 17:4862–4887

    Article  CAS  Google Scholar 

  • Shevchenko SM, Deineko IP (1983) Chemistry of anthraquinone pulping. Wood Chem (Riga) 6:3–32

    Google Scholar 

  • Shi R, Sun Y-H, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163

    Article  CAS  PubMed  Google Scholar 

  • Shorygina NN, Reznikov VM, Yelkin VV (1976) Chemical reactivity of lignin. Nauka, Moscow

    Google Scholar 

  • Sjöström E (1981) Wood chemistry (Riga): fundamentals and applications. Academic Press, New York

    Google Scholar 

  • Srzić D, Martinović S, Lj Tolić Paša, Kezele N, Shevchenko SM, Klasinc L (1995) Laser desorption Fourier-transform mass spectrometry of lignins. Rapid Commun Mass Spectr 9:245–249

    Article  Google Scholar 

  • Ten E, Vermerris W (2015) Recent developments in polymers derived from industrial lignin. J Appl Polymer Sci 132:42069–42082

    Article  CAS  Google Scholar 

  • Thakur VK, Manju Kumari Thakur M, Raghavan P, Michael R, Kessler M (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng J-K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  PubMed  Google Scholar 

  • Werthemann DP (1981) The xylophilicity/hydrophilicity balance of quinoid pulping additives. Tappi 64(3):140–142

    CAS  Google Scholar 

  • Werthemann DP, Huber-Emden H, Bersier PM, Kelemen J (1981) High catalytic activity of rosindone and related compounds in alkaline pulping. J Wood Chem Technol 1(2):185–197

    Article  CAS  Google Scholar 

  • Wilder HD, Daleski EJ (1965) Part II of a series on kraft pulping kinetics. Tappi J 48(5):293–297

    CAS  Google Scholar 

  • Yamasaki T, Hosoya S, Chen C-L, Gratzl JS, Chang H-M (1981) Characterization of residual lignin in kraft pulp. In: Proceedings of international symposium on wood pulp chemistry Stockholm, Sweden, vol 2, pp 34–42

  • Zakis GF (1987) Functional analysis of lignins and their derivatives. Zinatne, Riga

    Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16(4):227–233

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey M. Shevchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstigneyev, E.I., Shevchenko, S.M. Structure, chemical reactivity and solubility of lignin: a fresh look. Wood Sci Technol 53, 7–47 (2019). https://doi.org/10.1007/s00226-018-1059-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-018-1059-1

Navigation