Skip to main content
Log in

Dried cell wall nanopore configuration of Douglas-fir, western red cedar and aspen heartwoods

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Wood cell wall pores are essential for understanding nanostructure and subsequent application to wood processing and new product design. CO2 and N2 sorption isotherms were used to explore nanopores in dried cell walls of Douglas-fir, aspen and western red cedar heartwood specimens. The total cell wall pore volume was estimated as sum of detected micropore volume from the CO2 isotherm and the volume of pores that are less than 10 nm from the N2 isotherm. The estimated pore volumes from the gas sorption method were statistically lower than those obtained from the classical pycnometer method using water and white mineral oil as replacing liquids. Large open hysteresis was observed in CO2 sorption isotherms. Further pore distribution analysis assigned the detected 10–36 nm pores to those in pit membranes. Extraction of western red cedar heartwoods largely affected the detected 0.4–0.6 nm pores, which strongly suggests penetration of extractives into cell walls. Despite the exploratory nature of this study on western red cedar, CO2 sorption analysis shows great potential in exploring micro-distribution of extractives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren PA (1970) Chlorite delignification of spruce wood. Dissertation, McGill University

  • Babu DJ, Lange M, Cherkashinin G, Issanin A, Staudt R, Schneider JJ (2013) Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays. Carbon 61:616–623

    Article  CAS  Google Scholar 

  • Busse-Wicher M, Gomes TC, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J 79(3):492–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang SS, Quignard F, Alméras T, Clair B (2015) Mesoporosity changes from cambium to mature tension wood: a new step toward the understanding of maturation stress generation in trees. New Phytol 205(3):1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F (2008) Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromol 9(2):494–498

    Article  CAS  Google Scholar 

  • Côté WA (1963) Structural factors affecting the permeability of wood. J Polym Sci 2(1):231–242

    Google Scholar 

  • Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338(6110):1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Flournoy DS, Kirk TK, Highley TL (1991) Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45(5):383–388

    Article  CAS  Google Scholar 

  • Harris DC (2003) Quantitative chemical analysis. W.H. Freeman, New York

    Google Scholar 

  • Hill CAS, Papadopoulos AN (2001) A review of methods used to determine the size of the cell wall microvoids. J Inst Wood Sci 15(6):337–345

    Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Springer, New York

    Book  Google Scholar 

  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96(2):409–419

    Article  PubMed  Google Scholar 

  • Jansen S, Lamy JB, Burlett R, Cochard H, Gasson P, Delzon S (2012) Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Plant Cell Environ 35(6):1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Kellogg RM, Wangaard FF (1969) Variation in the cell-wall density of wood. Wood Fiber Sci 1(3):80–204

    Google Scholar 

  • Kojiro K, Furuta Y, Ishimaru Y (2008a) Influence of heating and drying history on micropores in dry wood. J Wood Sci 54(3):202–207

    Article  Google Scholar 

  • Kojiro K, Furuta Y, Ohkoshi M, Ishimaru Y, Yokoyama M, Sugiyama J, Kawai S, Mitsutani T, Ozaki H, Sakamoto M, Imamura M (2008b) Changes in micropores in dry wood with elapsed time in the environment. J Wood Sci 54(6):515–519

    Article  Google Scholar 

  • Kojiro K, Miki T, Sugimoto H, Nakajima M, Kanayama K (2010) Micropores and mesopores in the cell wall of dry wood. J Wood Sci 56(2):107–111

    Article  CAS  Google Scholar 

  • Koumoutsakos A, Avramidis S (2002) Mass transfer characteristics of western hemlock and western red cedar. Holzforschung 56(2):185–190

    Article  CAS  Google Scholar 

  • Kulasinski K, Guyer RA (2016) Quantification of nanopore networks: application to amorphous polymers. J Phys Chem C 120(49):28144–28151

    Article  CAS  Google Scholar 

  • Kulasinski K, Guyer R, Keten S, Derome D, Carmeliet J (2015) Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules 48(8):2793–2800

    Article  CAS  Google Scholar 

  • Kuo ML, Arganbright DG (1980) Cellular distribution of extractives in redwood and incense cedar—part I. Radial variation in cell-wall extractive content. Holzforschung 34(1):17–22

    Article  CAS  Google Scholar 

  • Li G, Wang Z (2013) Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors. Macromolecules 46(8):3058–3066

    Article  CAS  Google Scholar 

  • Lowell S, Shield JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer, Boston

    Book  Google Scholar 

  • Morris PI, Stirling R (2012) Western red cedar extractives associated with durability in ground contact. Wood Sci Technol 46(5):991–1002

    Article  CAS  Google Scholar 

  • Mulfort KL, Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT (2010) An interpenetrated framework material with hysteretic CO2 uptake. Chem Eur J 16(1):276–281

    Article  PubMed  CAS  Google Scholar 

  • Nakatani T, Ishimaru Y, Iida I, Furuta Y (2008) Microstructure of wood: change in micropore structure accompanied by delignification. J Wood Sci 54(3):252–255

    Article  CAS  Google Scholar 

  • Papadopoulos AN (2003) Determination of surface area and pore volume of holocellulose and chemically modified wood flour using the nitrogen adsorption technique. Holz Roh Werkst 61:453–456

    Article  CAS  Google Scholar 

  • Papadopoulos AN (2005) An investigation of the cell wall ultrastructure of the sapwood of then Greek wood species by means of chemical modification. Holz Roh Werkst 63:437–441

    Article  CAS  Google Scholar 

  • Quantachrome Instruments (2008) Micropore size analysis of porous carbons using CO2 adsorption at 273.15 K (0°C). Powder Tech Note 35

  • Quantachrome Instruments (2011) Adsorptives for physisorption experiments: selection and their physical properties. Powder Tech Note 52

  • Sano Y (2004) Intervascular pitting across the annual ring boundary in Betula platyphylla var. japonica and Fraxinus mandshurica var. japonica. IAWA J 25(2):129–140

    Article  Google Scholar 

  • Sano Y, Kawakami Y, Ohtani J (1999) Variation in the structure of intertracueary pit membranes in Abies saculinensis, as observed by field-emission scanning electron microscopy. IAWA J 20(4):375–388

    Article  Google Scholar 

  • Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biom Bull 2(6):110–114

    Article  CAS  Google Scholar 

  • Shi J, Avramidis S (2017a) Water sorption hysteresis in wood: I review and experimental patterns—geometric characteristics of scanning curves. Holzforschung 71(4):307–316

    CAS  Google Scholar 

  • Shi J, Avramidis S (2017b) Water sorption hysteresis in wood: III physical modeling by molecular simulation. Holzforschung 71(9):733–741

    CAS  Google Scholar 

  • Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Skaar C (1972) Water in wood. Syracuse University Press, New York

    Google Scholar 

  • Stamm AJ (1929) Density of wood substance, adsorption by wood, and permeability of wood. J Phys Chem 33(3):398–414

    Article  CAS  Google Scholar 

  • Stamm AJ (1964) Wood and cellulose science. The Ronald Press Company, New York

    Google Scholar 

  • Stone JE, Scallan AM (1968) The effect of component removal upon the porous structure of the cell wall of wood. Part III. A comparison between the sulphite and kraft processes. Pulp Pap Mag Can 69(6):69–74

    CAS  Google Scholar 

  • Streit W, Fengel D (1994) Heartwood formation in Quebracho colorado (Schinopsis balansae Engl.): tannin distribution and penetration of extractives into the cell walls. Holzforschung 48(5):361–367

    Article  CAS  Google Scholar 

  • Swan EP, Jiang KS, Gardner JAF (1969) The lignans of Thuja plicata and the sapwood-heartwood transformation. Phytochemistry 8(2):345–351

    Article  CAS  Google Scholar 

  • Tarkow H, Krueger J (1961) Distribution of hot-water soluble material in cell walls and cavities of redwood. For Prod J 11(5):228–229

    CAS  Google Scholar 

  • Vaidhyanathan R, Iremonger SS, Dawson KW, Shimizu GK (2009) An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem Commun 35:5230–5232

    Article  CAS  Google Scholar 

  • Welch BL (1947) The generalization of ‘student’s’ problem when several different population variances are involved. Biometrika 34(1/2):28–35

    Article  PubMed  CAS  Google Scholar 

  • Wilfong JG (1966) Specific gravity of wood substance. For Prod J 16(1):55–61

    CAS  Google Scholar 

  • Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344(6179):90–93

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker JE, Tang CC, Allan DR, Rizkallah PJ, Hubberstey P, Champness NR (2012) A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nat Mater 11(8):710–716

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Tian M, Shen C, Wang Z (2013) Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO2 gas, organic and water vapors. Polym Chem 4(4):961–968

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Eric Fu from the Department of Statistics at the University of British Columbia for the statistical consulting and Dr. Katsuhiko Takata, Dr. Kayo Kudo and Dr. Yasuo Kawai from Akita Prefectural University for discussion of pit membrane structures. This work was funded by the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant RGPIN-2016-04325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Avramidis, S. Dried cell wall nanopore configuration of Douglas-fir, western red cedar and aspen heartwoods. Wood Sci Technol 52, 1025–1037 (2018). https://doi.org/10.1007/s00226-018-1011-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-018-1011-4

Navigation