Skip to main content
Log in

Wood photostabilization roles of the condensed tannins and flavonoids from the EtOAc fraction in the heartwood extract of Acacia confusa

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Lignin, one of the three major components in wood, can absorb UV light and react with 1O2, leading to wood photodegradation. Previous studies demonstrated the ethyl acetate (EtOAc) fraction of the heartwood extract in Acacia confusa (AcHW) has good photostabilities to prevent photodegradation of the wood. However, these effective constituents have different structural characteristics and may affect their photostabilities and protection efficacies on wood which need to be clarified. This study analyzed the polyphenolic contents, chemical constituents and photostabilities of the six subfractions (EA1–EA6) which successively fractioned from the EtOAc fraction in AcHW by the colorimetric methods, UV/Vis spectrophotometry and high-performance liquid chromatography and evaluated the wood photoprotection abilities of these treatments. The results showed the more flavones and flavonols contained in the subfractions, the better the UVA absorptivity was. Besides, the catecholic-condensed tannins and flavonoids in these subfractions also provide good 1O2 quenching abilities and phenoxyl radical scavenging abilities. Advanced results also established in these subfractions, melanoxetin, transilitin, 7,3′,4′-trihydroxy-3-methoxyflavone, 7,8,3′-trihydroxy-3,4′-dimethoxyflavone (flavonols), 7,8,3′,4′-tetrahydroxyflavone, 7,3′,4′-trihydroxyflavone, 7,3′,4′-trihydroxy-5-methoxyflavone (flavones) and okanin (chalcone) can absorb the energy of UVA light; the condensed tannins, 3,4-dihydroxybenzoic acid (phenolic acid), melacacidin-based oligomers, melacacidin, 4-O-methylmelacacidin, 4′-O-methylmelacacidin (melacacidin-based flavanols), 3,7,8,3′,4′-pentahydroxyflavanone (flavanonol), 7,8,3′,4′-tetrahydroxyflavanone (flavanone), the flavones, flavonols and chalcone can suppress the phenoxyl radicals; the condensed tannins, melacacidin-based oligomers and the flavonoids can quench 1O2. Hence, the photostability of extract-free wood slices treated with these effective constituents was consequently enhanced. In summary, these results clearly demonstrated the multiple wood photoprotection actions of these effective constituents and their potential as natural wood photostabilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bonini C, D’Auria M, D’Alessio L, Mauriello G, Tofani D, Viggiano D, Zimbardi F (1998) Singlet oxygen degradation of lignin. J Photochem Photobiol, A 113(2):119–124

    Article  CAS  Google Scholar 

  • Bridson JH, Kaur J, Zhang Z, Donaldson L, Fernyhough A (2015) Polymeric flavonoids processed with co-polymers as UV and thermal stabilisers for polyethylene films. Polym Degrad Stab 122:18–24

    Article  CAS  Google Scholar 

  • Chang ST (1985) Effect of light wavelength on the degradation of wood. Forestry Prod Ind 4:118–123 (in Chinese)

    Google Scholar 

  • Chang HT, Chang ST (2006) Modification of wood with isopropyl glycidyl ether and its effects on decay resistance and light stability. Bioresour Technol 97(11):1265–1271

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Chang ST (2017) Multiple photostabilization actions of heartwood extract from Acacia confusa. Wood Sci Technol 51(5):1133–1153

    Article  CAS  Google Scholar 

  • Chang ST, Chou PL (2000) Photodiscoloration inhibition of wood coated with UV-curable acrylic clear coatings and its elucidation. Polym Degrad Stabil 69(3):355–360

    Article  CAS  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10(3):178–182

    CAS  Google Scholar 

  • Chang HT, Su YC, Chang ST (2006) Studies on photostability of butyrylated milled wood lignin using spectroscopic analyses. Polym Degrad Stabil 91(4):816–822

    Article  CAS  Google Scholar 

  • Chang TC, Chang HT, Wu CL, Chang ST (2010a) Influences of extractives on the photodegradation of wood. Polym Degrad Stabil 95:516–521

    Article  CAS  Google Scholar 

  • Chang TC, Chang HT, Wu CL, Lin HY, Chang ST (2010b) Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polym Degrad Stabil 95:1518–1522

    Article  CAS  Google Scholar 

  • Chang TC, Lin HY, Wang SY, Chang ST (2014) Study on inhibition mechanisms of light-induced wood radicals by Acacia confusa heartwood extracts. Polym Degrad Stabil 105:42–47

    Article  CAS  Google Scholar 

  • Chang TC, Hsiao NC, Yu PC, Chang ST (2015) Exploitation of Acacia confusa heartwood extract as natural photostabilizers. Wood Sci Technol 49(4):811–823

    Article  CAS  Google Scholar 

  • Crestini C, D’Auria M (1997) Singlet oxygen in the photodegradation of lignin models. Tetrahedron 53(23):7877–7888

    Article  CAS  Google Scholar 

  • de la Caba K, Guerrero P, del Rio M, Mondragon I (2007) Weathering behaviour of wood-faced construction materials. Constr Build Mater 21(6):1288–1294

    Article  Google Scholar 

  • El Ghissassi F, Baan R, Straif K, Grosse Y, Secretan B, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V (2009) A review of human carcinogens-part D: radiation. Lancet Oncol 10(8):751–752

    Article  PubMed  Google Scholar 

  • Evans PD, Wallis AFA, Owen NL (2000) Weathering of chemically modified wood surfaces. Wood Sci Technol 34(2):151–165

    Article  CAS  Google Scholar 

  • Evans PD, Owen NL, Schmid S, Webster RD (2002) Weathering and photostability of benzoylated wood. Polym Degrad Stabil 76:291–303

    Article  CAS  Google Scholar 

  • Fischer K, Beyer M (2000) Comparison of light-induced and heat-induced yellowing of pulp. Lenzinger Ber 79:25–31

    CAS  Google Scholar 

  • Grigsby W, Steward D (2017) Applying the protective role of condensed tannins to acrylic-based surface coatings exposed to accelerated weathering. J Polym Environ. https://doi.org/10.1007/s10924-017-0999-0

    Google Scholar 

  • Grigsby WJ, Bridson JH, Lomas C, Frey H (2014) Evaluating modified tannin esters as functional additives in polypropylene and biodegradable aliphatic polyester. Macromol Mater Eng 299(10):1251–1258

    Article  CAS  Google Scholar 

  • Grigsby WJ, Bridson JH, Schrade C (2015) Modifying biodegradable plastics with additives based on condensed tannin esters. J Appl Polym Sci 132(11):41626

    Google Scholar 

  • Hayoz P, Peter W, Rogez D (2003) A new innovative stabilization method for the protection of natural wood. Prog Org Coat 48:298–309

    Article  Google Scholar 

  • Heitner C (1993) Light-induced yellowing of wood-containing papers. In: Heitner C, Scaiano JC (eds) Photochemistry of lignocellulosic materials. American Chemistry Society, Washington, pp 2–22

    Chapter  Google Scholar 

  • Hon NS (1975) Formation of free radicals in photoirradiated cellulose. I. Effect of wavelength. J Polymer Sci Polymer Chem Ed 13(6):1347–1361

    Article  CAS  Google Scholar 

  • Hon DNS (1979) Photooxidative degradation of cellulose: reactions of the cellulosic free radicals with oxygen. J Polymer Sci Polymer Chem Ed 17(2):441–454

    Article  CAS  Google Scholar 

  • Hon DNS (1991) Weathering and phytochemistry of wood. In: Hon DNS, Shiraishi N (eds) Wood and Cellulosic Chemistry. Marcel Dekker, New York, pp 513–546

    Google Scholar 

  • Hon DNS, Feist WC (1992) Hydroperoxidation in photo-irradiated wood surfaces. Wood Fiber Sci 24:448–455

    CAS  Google Scholar 

  • Hon DNS, Chang ST, Feist WC (1982) Participation of singlet oxygen in the photodegradation of wood surfaces. Wood Sci Technol 16(3):193–201

    Article  CAS  Google Scholar 

  • Hsieh CY, Chang ST (2010) Antioxidant activities and xanthine oxidase inhibitory effects of phenolic phytochemicals from Acacia confusa twigs and branches. J Agric Food Chem 58(3):1578–1583

    Article  CAS  PubMed  Google Scholar 

  • Huvaere K, Skibsted LH (2015) Flavonoids protecting food and beverages against light. J Sci Food Agric 95:20–35

    Article  CAS  PubMed  Google Scholar 

  • Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200

    Article  CAS  Google Scholar 

  • Koontz JL, Marcy JE, O’Keefe SF, Duncan SE, Long TE, Moffitt RD (2010) Polymer processing and characterization of LLDPE films loaded with α-tocopherol, quercetin, and their cyclodextrin inclusion complexes. J Appl Polym Sci 117(4):2299–2309

    Article  CAS  Google Scholar 

  • Kuo ML, Hu N (1991) Ultrastructural changes of photodegradation of wood surface exposed to UV. Holzforschung 45(5):347–353

    Article  CAS  Google Scholar 

  • Lin HY, Chang ST (2013) Antioxidant potency of phenolic phytochemicals from the root extract of Acacia confusa. Ind Crops Prod 49:871–878

    Article  CAS  Google Scholar 

  • Makino R, Ohara S, Hashida K (2011) Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin. Holzforschung 65(5):651–657

    Article  CAS  Google Scholar 

  • Masek A (2015) Flavonoids as natural stabilizers and color indicators of ageing for polymeric materials. Polymers 7(6):1125–1144

    Article  CAS  Google Scholar 

  • McPhail DB, Hartley RC, Gardner PT, Duthie GG (2003) Kinetic and stoichiometric assessment of the antioxidant activity of flavonoids by electron spin resonance spectroscopy. J Agric Food Chem 51(6):1684–1690

    Article  CAS  PubMed  Google Scholar 

  • Min DB, Boff JM (2002) Chemistry and reaction of singlet oxygen in foods. Compr Rev Food Sci F 1(2):58–72

    Article  CAS  Google Scholar 

  • Min D, Smith SW, Chang H, Jameel H (2013) Influence of isolation condition on structure of milled wood lignin characterized by quantitative 13C nuclear magnetic resonance spectroscopy. BioResources 8(2):1790–1800

    Article  Google Scholar 

  • Mukai K, Nagai S, Ohara K (2005) Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. Free Radic Biol Med 39(6):752–761

    Article  CAS  PubMed  Google Scholar 

  • Müller U, Ratzsch M, Schwanninger M, Steiner M, Zobl H (2003) Yellowing and IR-changes of spruce wood as result of UV-irradiation. J Photochem Photobiol, B 69:97–105

    Article  Google Scholar 

  • Nagai S, Ohara K, Mukai K (2005) Kinetic study of the quenching reaction of singlet oxygen by flavonoids in ethanol solution. J Phys Chem B 109(9):4234–4240

    Article  CAS  PubMed  Google Scholar 

  • Pandey KK (2005) Study of the effect of photo-irradiation on the surface chemistry of wood. Polym Degrad Stab 90(1):9–20

    Article  CAS  Google Scholar 

  • Parejo PG, Zayat M, Levy D (2006) Highly efficient UV-absorbing thin-film coatings for protection of organic materials against photodegradation. J Mater Chem 22:2113–2208

    Google Scholar 

  • Peng Y, Liu R, Cao J, Luo S (2014) Antiweathering effects of vitamin E on wood flour/polypropylene composites. Polym Compos 35(11):2085–2093

    Article  CAS  Google Scholar 

  • Peng Y, Liu R, Cao J, Guo X (2015) Effects of vitamin E combined with antioxidants on wood flour/polypropylene composites during accelerated weathering. Holzforschung 69(1):113–120

    CAS  Google Scholar 

  • Pospíšil J, Nešpurek S (2000) Photostabilization of coatings. Mechanisms and performance. Prog Polym Sci 25(9):1261–1335

    Article  Google Scholar 

  • Pu Y, Ragauskas AJ (2005) Structural analysis of acetylated hardwood lignins and their photoyellowing properties. Can J Chem 83:2132–2139

    Article  CAS  Google Scholar 

  • Rabek JF (1990) Introduction to the oxidative and photo-stabilization of polymers. In: Rabek JF (ed) Photostabilization of polymers: principles and applications. Elsevier Applied Science, New York, pp 42–79

    Chapter  Google Scholar 

  • Sisa M, Bonne SL, Ferreira D, van der Westhuizen JH (2010) Photochemistry of flavonoids. Molecules 15(8):5196–5245

    Article  CAS  PubMed  Google Scholar 

  • Tondi G, Schnabel T, Wieland S, Petutschnigg A (2013) Surface properties of tannin treated wood during natural and artificial weathering. Int Wood Prod J 4(3):150–157

    Article  Google Scholar 

  • Tournaire C, Croux S, Maurette MT (1993) Antioxidant activity of flavonoids: efficiency of singlet oxygen (1Δg) quenching. J Photochem Photobiol, B 19(3):205–215

    Article  CAS  Google Scholar 

  • Valencia D, Alday E, Robles-Zepeda R, Garibay-Escobar A, Galvez-Ruiz JC, Salas-Reyes M, Jiménez-Estrada M, Velazquez-Contreras E, Hernandez J, Velazquez C (2012) Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food Chem 131(2):645–651

    Article  CAS  Google Scholar 

  • Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4(1):26–32

    Article  CAS  Google Scholar 

  • Williams RS (2005) Weathering of wood. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Florida, pp 139–185

    Google Scholar 

  • Wu JH, Tung YT, Wang SY, Shyur LF, Kuo YH, Chang ST (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J Agric Food Chem 53:5917–5921

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support (NSC 102-2313-B-002-023-MY3) from the Ministry of Science and Technology Taiwan. We also acknowledge the supports of materials from Assistant Research Fellow Min-Jay Chung (the Experimental Forest, National Taiwan University), the assistance of wood processing by Professor Rank Specialist Chun-Chieh Huang (Department of Wood Science and Design, National Pingtung University of Science and Technology), the assistance of Mass analysis from Associate Professor Ting-Feng Yeh (School of Forestry and Resource Conservation, National Taiwan University) and the NMR spectral analyses by Ms. Shou-Ling Huang (Department of Chemistry, National Taiwan University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tzen Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, TC., Chang, ST. Wood photostabilization roles of the condensed tannins and flavonoids from the EtOAc fraction in the heartwood extract of Acacia confusa. Wood Sci Technol 52, 855–871 (2018). https://doi.org/10.1007/s00226-018-0996-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-018-0996-z

Navigation