Minimum Reload Cost Graph Factors


The concept of Reload cost in a graph refers to the cost that occurs while traversing a vertex via two of its incident edges. This cost is uniquely determined by the colors of the two edges. This concept has various applications in transportation networks, communication networks, and energy distribution networks. Various problems using this model are defined and studied in the literature. The problem of finding a spanning tree whose diameter with respect to the reload costs is smallest possible, the problems of finding a path, trail or walk with minimum total reload cost between two given vertices, problems about finding a proper edge coloring of a graph such that the total reload cost is minimized, the problem of finding a spanning tree such that the sum of the reload costs of all paths between all pairs of vertices is minimized, and the problem of finding a set of cycles of minimum reload cost, that cover all the vertices of a graph, are examples of such problems. In this work we focus on the last problem. Noting that a cycle cover of a graph is a 2-factor of it, we generalize the problem to the problem of finding an r-factor of minimum reload cost of an edge colored graph. We prove several NP-hardness results for special cases of the problem. Namely, bounded degree graphs, planar graphs, bounded total cost, and bounded number of distinct costs. For the special case of r = 2, our results imply an improved NP-hardness result. On the positive side, we present a polynomial-time solvable special case which provides a tight boundary between the polynomial and hard cases in terms of r and the maximum degree of the graph. We then investigate the parameterized complexity of the problem, prove W[1]-hardness results and present an FPT-algorithm.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    A well known technique in computational geometry [7].


  1. 1.

    Amaldi, E., Galbiati, G., Maffioli, F.: On minimum reload cost paths, tours, and flows. Networks 57(3), 254–260 (2011)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Arkoulis, S., Anifantis, E., Karyotis, V., Papavassiliou, S., Mitrou, N.: On the optimal, fair and channel-aware cognitive radio network reconfiguration. Comput. Netw. 57(8), 1739–1757 (2013)

    Article  Google Scholar 

  3. 3.

    Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A ckn 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Celik, A., Kamal, A.E.: Green cooperative spectrum sensing and scheduling in heterogeneous cognitive radio networks. IEEE Trans. Cogn. Commun. Netw. 2(3), 238–248 (2016)

    Article  Google Scholar 

  5. 5.

    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Google Scholar 

  6. 6.

    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp 150–159. IEEE Computer Society (2011)

  7. 7.

    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Santa Clara (2008)

    Google Scholar 

  8. 8.

    Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity. Texts in Computer Science. Springer (2013)

  9. 9.

    Galbiati, G.: The complexity of a minimum reload cost diameter problem. Discret. Appl. Math. 156(18), 3494–3497 (2008)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Galbiati, G., Gualandi, S., Maffioli, F.: On minimum changeover cost arborescences. In: Proceedings of the 10th International Symposium on Experimental Algorithms (SEA), volume 6630 of LNCS, pp 112–123 (2011)

  11. 11.

    Galbiati, G., Gualandi, S., Maffioli, F.: On minimum reload cost cycle cover. Discret. Appl. Math. 164, 112–120 (2014)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Gamvros, I., Gouveia, L., Raghavan, S.: Reload cost trees and network design. Networks 59(4), 365–379 (2012)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Gourvès, L., Lyra, A., Martinhon, C., Monnot, J.: The minimum reload s-t path, trail and walk problems. Discret. Appl. Math. 158(13), 1404–1417 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Gözüpek, D., Özkan, S., Paul, C., Sau, I., Shalom, M.: Parameterized complexity of the MINCCA problem on graphs of bounded decomposability. Theor. Comput. Sci. 690, 91–103 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Gözüpek, D., Buhari, S., Alagöz, F.: A spectrum switching delay-aware scheduling algorithm for centralized cognitive radio networks. IEEE Trans. Mob. Comput. 12(7), 1270–1280 (2013)

    Article  Google Scholar 

  16. 16.

    Gözüpek, D., Shachnai, H., Shalom, M., Zaks, S.: Constructing minimum changeover cost arborescenses in bounded treewidth graphs. Theor. Comput. Sci. 621, 22–36 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Gözüpek, D., Shalom, M.: The complexity of edge coloring with minimum reload/changeover costs. Networks 73(3), 344–357 (2019)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Gözüpek, D., Shalom, M., Voloshin, A., Zaks, S.: On the complexity of constructing minimum changeover cost arborescences. Theor. Comput. Sci. 540, 40–52 (2014)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper interval graphsQ with small cliques. SIAM J. Comput. 25(3), 540–561 (1996)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Kloks, T.: Treewidth. Computations and Approximations. Springer-Verlag LNCS (1994)

  21. 21.

    Meijer, H., Núñez-Rodríguez, Y., Rappaport, D.: An algorithm for computing simple k-factors. Inf. Process. Lett. 109(12), 620–625 (2009)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Proskurowski, A.: Separating subgraphs in k-trees: Cables and caterpillars. Discret. Math. 49(3), 275–285 (1984)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Pulleyblank, R.: Faces of Matching Polyhedra, PhD thesis, University of Waterloo (1973)

  25. 25.

    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing STOC ’78, pp 216–226. ACM, New York (1978)

  26. 26.

    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24. Springer Science & Business Media, Berlin (2003)

    Google Scholar 

  27. 27.

    Takahashi, A., Ueno, S., Kajitani, Y.: Mixed searching and proper-path-width. Theor. Comput. Sci. 137(2), 253–268 (1995)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Telle, J.A.: Tree-decompositions of small pathwidth. Discret. Appl. Math. 145(2), 210–218 (2005)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Wirth, H.-C., Steffan, J.: Reload cost problems: minimum diameter spanning tree. Discret. Appl. Math. 113(1), 73–85 (2001)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dimitrios M. Thilikos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Julien Baste was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 388217545.

Dimitrios M. Thilikos was supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010) and by the Research Council of Norway and the French Ministry of Europe and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.

Didem Gözüpek was supported by the bilateral research program CNRS/TUBITAK grant no.114E731.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baste, J., Gözüpek, D., Shalom, M. et al. Minimum Reload Cost Graph Factors. Theory Comput Syst (2021).

Download citation


  • Parameterized complexity
  • Graph factors
  • Reload costs