Skip to main content
Log in

On Approximating (Connected) 2-Edge Dominating Set by a Tree

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

The edge dominating set problem (EDS) is to compute a minimum size edge set such that every edge is dominated by some edge in it. This paper considers a variant of EDS with extensions of multiple and connected dominations combined. In the b-EDS problem, each edge needs to be dominated b times. Connected EDS requires an edge dominating set to be connected while it has to form a tree in Tree Cover. Although each of EDS, b-EDS, and Connected EDS (or Tree Cover) has been well studied, each known to be approximable within 2 (or 8/3 for b-EDS in general), nothing is known when these extensions are imposed simultaneously on EDS unlike in the case of the (vertex) dominating set problem. We consider Connected 2-EDS and 2-Tree Cover (i.e., a combination of 2-EDS and Tree Cover), and present a polynomial algorithm approximating each within 2. Moreover, it will be shown that the single tree computed is no larger than twice the optimum for (not necessarily connected) 2-EDS, thus also approximating 2-EDS equally well. It also implies that 2-EDS with clustering properties can be approximated within 2 as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Consider for instance a star S n with the center node u having n leaves, and compose a graph G by attaching a distinct triangle to each leaf of S n . Then, a connected 2-eds needs to include all the edges of S n and at least 2 edges from each triangle, totaling to 3n edges. A maximum matching on the other hand is of size n + 1, consisting of one edge (u, v) in S n , the edge not incident to v from the triangle attached to v, and one edge from each of the remaining triangles.

  2. Think of the case of HK s, s+1 for instance, which can appear as a subgraph in \(G[A\cup D]\). Since any basic tree T spanning H consists of s many 2-edges, |E(T)| = 2s and hence, (|E(T)| + 1)/4 = (2s + 1)/4. Suppose y(δ(u)) ≤ 1/2, ∀uV (H). Then, \(y(E[T])\leq {\sum }_{u\in A(H)}y(\delta (u))\leq s/2\). Thus, y(E[T]) < (|E(T)| + 1)/4 in this case.

References

  1. Alber, J., Betzler, N., Niedermeier, R.: Experiments on data reduction for optimal domination in networks. Ann. Oper. Res. 146, 105–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arkin, E. M., Halldórsson, M. M., Hassin, R.: Approximating the tree and tour covers of a graph. Inform. Process. Lett. 47, 275–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armon, A.: On Min-max r-gatherings. Theor. Comput. Sci. 412(7), 573–582 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, B. S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the capacitated b-edge dominating set problem. Theory Comput Syst. 385(1–3), 202–213 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binkele-Raible, D, Fernau, H.: Enumerate and Measure: Improving Parameter Budget Management. In: Proceedings International Conference on Parameterized and Exact Computation, pp. 38–49. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected Dominating Set in Sensor Networks and MANETs. Springer, New York (2005)

    Book  MATH  Google Scholar 

  8. Chellali, M., Favaron, O., Hansberg, A.: Volkmann, l.: k-domination and k-independence in graphs: a survey. Graphs Combin. 28, 1–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chlebík, M., Chlebíková, J.: Approximation hardness of edge dominating set problems, vol. 11 (2006)

  10. Cooper, C., Klasing, R., Zito, M.: Dominating Sets in Web Graphs. In: Algorithms and Models for the Web-Graph, LNCS 3243, pp. 31–43. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Dai, F., Wu, J.: On Constructing k-connected k-dominating Set in Wireless Ad Hoc and Sensor Networks. J. Parallel Distrib. Comput. 66(7), 947–958 (2006)

    Article  MATH  Google Scholar 

  12. Du, D.-Z., Wan, P.-J.: Connected Dominating Set: Theory and Applications. Springer, New York (2013)

    Book  MATH  Google Scholar 

  13. Du, H., Ding, L., Wu, W., Kim, D., Pardalos, P. M., Willson, J.: Connected Dominating Set in Wireless Networks. In: Pardalos, P.M., Du, D.-Z., Graham, R. (eds.) Handbook of Combinatorial Optimization, pp. 783–833. Springer, New York (2013)

    Chapter  Google Scholar 

  14. Escoffier, B., Monnot, J., Paschos, V.T.h., Xiao, M.: New results on polynomial inapproximabilityand fixed parameter approximability of edge dominating set. Theory comput Syst. 56(2), 330–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fernau, H.: EDGE DOMINATING SET: Efficient Enumeration-based Exact Algorithms Proceedings 2Nd International Conference on Parameterized and Exact Computation, pp. 142–153. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Fernau, H., Fomin, F. V., Philip, G., Saurabh, S.: The Curse of Connectivity: t-Total Vertex (Edge) Cover. In: Proceedings 16Th Annual International Conference on Computing and Combinatorics, pp. 34–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Fernau, H., Manlove, D. F.: Vertex and edge covers with clustering properties: Complexity and algorithms. J. Discrete Algoritms 7(2), 149–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fink, J. F., Jacobson, M.S.: n-Domination in Graphs. In: Alavi, Y., Chartrand, G., Lick, D. R., Wall, C. E., Lesniak, L. (eds.) Graph Theory with Applications to Algorithms and Computer Science, pp. 283–300. John Wiley & Sons, Inc., New York (1985)

    Google Scholar 

  19. Fink, J. F., Jacobson, M. S.: On N-Domination, N-Dependence and Forbidden Subgraphs. In: Alavi, Y., Chartrand, G., Lick, D. R., Wall, C. E., authorLesniak, L. (eds.) Graph Theory with Applications to Algorithms and Computer Science, pp. 301–311. John Wiley & Sons, Inc., New York (1985)

    Google Scholar 

  20. Fomin, F. V., Gaspers, S., Saurabh, S., Stepanov, A. A.: On two techniques of combining branching and treewidth. Algorithmica 54(2), 181–207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fujito, T.: On Matchings and b-Edge Dominating Sets: a 2-Approximation Algorithm for the 3-Edge Dominating Set Problem. In: Algorithm Theory–SWAT 2014, LNCS 8503, pp. 206–216. Springer, Cham (2014)

    Google Scholar 

  22. Gao, X., Zou, F., Kim, D., Du, D.-Z.: The Latest Researches on Dominating Problems in Wireless Sensor Network. In: Handbook on Sensor Networks, Pp. 197–226. World Scientific (2010)

  23. Harary, F.: Graph theory. Addison-wesley, reading MA (1969)

  24. Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Domination in Graphs, Advanced Topics. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  25. Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamantals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  26. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: A Unified Approach to Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs. In: Proceedings 2Nd Ann. European Symp. on Algorithms, LNCS 855, pp. 424–435. Springer (1994)

  27. Kim, D., Gao, X., Zou, F., Du, D.-Z.: Construction of Fault-Tolerant Virtual Backbones in Wireless Networks. In: Handbook on Security and Networks, pp. 488–509. World Scientific (2011)

  28. Lovász, L., Plummer, M. D.: Matching Theory. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  29. Małafiejski, M., Żyliński, P.: Weakly Cooperative Guards in Grids. In: Proceedings 2005 International Conference on Computational Science and Its Applications - Volume Part I, pp. 647–656. Springer, Heidelberg (2005)

    Google Scholar 

  30. Savage, C.: Depth-first search and the vertex cover problem. Inf. Process. Lett. 14(5), 233–235 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schmied, R., Viehmann, C.: Approximating edge dominating set in dense graphs. Theor. Comput. Sci. 414(1), 92–99 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shang, W., Wan, P., Yao, F., Hu, X.: Algorithms for minimum m-connected k-tuple dominating set problem. Theor. Comput. Sci. 381(1–3), 241–247 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi, Y., Zhang, Y., Zhang, Z., Wu, W.: A greedy algorithm for the minimum 2-connected m-fold dominating set problem. J. Comb. Optim. 31(1), 136–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thai, M. T., Zhang, N., Tiwari, R., Xu, X.: On approximation algorithms of k-connected m-dominating sets in disk graphs. Theor. Comput. Sci. 385(1–3), 49–59 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, Y., Li, Y.: Construction Algorithms for K-Connected M-Dominating Sets in Wireless Sensor Networks. In: Proceedings 9Th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 83–90. ACM, New York (2008)

    Google Scholar 

  36. Xiao, M., Kloks, T., Poon, S.-H.: New parameterized algorithms for the edge dominating set problem. Theor. Comput. Sci. 511, 147–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, J., Zhang, Z., Wu, W., Xing, K.: A greedy algorithm for the fault-tolerant connected dominating set in a general graph. J. Comb. Optim. 28(1), 310–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for a number of valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Fujito.

Additional information

A preliminary version of this work appeared in Proc. 11th CSR (International Computer Science Symposium in Russia), 2016. This work is supported in part by JSPS KAKENHI under Grant Number 26330010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujito, T., Shimoda, T. On Approximating (Connected) 2-Edge Dominating Set by a Tree. Theory Comput Syst 62, 533–556 (2018). https://doi.org/10.1007/s00224-017-9764-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9764-y

Keywords

Navigation