The Utility of Genetic Risk Score to Improve Performance of FRAX for Fracture Prediction in US Postmenopausal Women

Abstract

The ability of the fracture risk assessment tool (FRAX) in discriminating fracture and non-fracture in postmenopausal women remains suboptimal. Adding a genetic profile may improve the performance of FRAX. Three genetic risk scores (GRSs) (GRS_fracture, GRS_BMD, GRS_eBMD) were calculated for each participant in the Women’s Health Initiative Study (n = 23,981), based on the summary statistics of three comprehensive osteoporosis-related genome-wide association studies (GWAS). The primary outcomes were incident major osteoporotic fracture (MOF) and hip fracture (HF). The association between each GRS and fracture risk were evaluated in separate Cox Proportional Hazard models, with FRAX clinical risk factors adjusted for. The discrimination ability of each model was assessed using Area Under the Curve (AUC). The predictive improvement attributable to each GRSs was assessed using the net reclassification improvement (NRI) and the integrated discrimination improvement (IDI). GRS_BMD and GRS_eBMD were significantly associated with MOF and HF risk, independent of the base FRAX risk factors. Compare to the base FRAX model, the models with GRS_fracture, GRS_BMD, and GRS_eBMD improved the reclassification of MOF by 0.5% (95% CI, 0.2% to 0.9%, p = p < .01), 0.3% (95% CI, 0.1% to 0.6%, p = 0.01), and 2.1% (95% CI, 0.3% to 2.8%, p < .01), respectively. Similar results were also observed when using HF as an outcome. Our study suggested that the addition of genetic profiles provide limited improvements in the reclassification of FRAX for MOF and HF.

This is a preview of subscription content, access via your institution.

Fig. 1

Data Availability

The data used in the current study is publically available through the database of Genotype and Phenotype (dbGap) (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000200.v12.p3).

References

  1. 1.

    Sözen T, Özışık L, Başaran NÇ (2017) An overview and management of osteoporosis. Eur J Rheumatol 4:46–56

    Article  Google Scholar 

  2. 2.

    Johnell O, Kanis JA (2004) An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int 15:897–902

    CAS  Article  Google Scholar 

  3. 3.

    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733

    CAS  Article  Google Scholar 

  4. 4.

    Ström O, Borgström F, Kanis JA, Compston J, Cooper C, McCloskey EV, Jönsson B (2011) Osteoporosis: burden, health care provision and opportunities in the EU: a report prepared in collaboration with the International osteoporosis foundation (IOF) and the European federation of pharmaceutical industry associations (EFPIA). Arch Osteoporos 6:59–155

    Article  Google Scholar 

  5. 5.

    Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:S4-9

    Article  Google Scholar 

  6. 6.

    Watts NB, Bilezikian JP, Camacho PM, Greenspan SL, Harris ST, Hodgson SF, Kleerekoper M, Luckey MM, McClung MR, Pollack RP, Petak SM (2010) American association of clinical endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract 16(Suppl 3):1–37

    Article  Google Scholar 

  7. 7.

    Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526

    Article  Google Scholar 

  8. 8.

    Sànchez-Riera L, Carnahan E, Vos T, Veerman L, Norman R, Lim SS, Hoy D, Smith E, Wilson N, Nolla JM, Chen JS, Macara M, Kamalaraj N, Li Y, Kok C, Santos-Hernández C, March L (2014) The global burden attributable to low bone mineral density. Ann Rheum Dis 73:1635–1645

    Article  Google Scholar 

  9. 9.

    Harvey N, Dennison E, Cooper C (2010) Osteoporosis: impact on health and economics. Nat Rev Rheumatol 6:99–105

    Article  Google Scholar 

  10. 10.

    Kanis JA, WHO Collaborating Centre for Metabolic Bone Diseases (2008) Assessment of osteoporosis at the primary health care level, WHO collaborating centre for metabolic bone diseases. University of Sheffield Medical School, Broomhall, Sheffield

    Google Scholar 

  11. 11.

    Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2007) Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int 18:1109–1117

    CAS  Article  Google Scholar 

  12. 12.

    Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19:1431–1444

    CAS  Article  Google Scholar 

  13. 13.

    Briot K, Paternotte S, Kolta S, Eastell R, Felsenberg D, Reid DM, Glüer C-C, Roux C (2014) FRAX®: prediction of major osteoporotic fractures in women from the general population: the OPUS study. PLoS ONE 8:e83436

    Article  Google Scholar 

  14. 14.

    Crandall CJ, Schousboe JT, Morin SN, Lix LM, Leslie W (2019) Performance of FRAX and FRAX-based treatment thresholds in women aged 40 years and older: the Manitoba BMD registry. J Bone Miner Res 34:1419–1427

    Article  Google Scholar 

  15. 15.

    Sornay-Rendu E, Munoz F, Delmas PD, Chapurlat RD (2010) The FRAX tool in French women: how well does it describe the real incidence of fracture in the OFELY cohort? J Bone Miner Res 25:2101–2107

    Article  Google Scholar 

  16. 16.

    Marques A, Ferreira RJ, Santos E, Loza E, Carmona L, da Silva JA (2015) The accuracy of osteoporotic fracture risk prediction tools: a systematic review and meta-analysis. Ann Rheum Dis 74:1958–1967

    Article  Google Scholar 

  17. 17.

    Crandall CJ, Larson JC, Watts NB, Gourlay ML, Donaldson MG, LaCroix A, Cauley JA, Wactawski-Wende J, Gass ML, Robbins JA, Ensrud KE (2014) Comparison of fracture risk prediction by the US preventive services task force strategy and two alternative strategies in women 50–64 years old in the women’s health initiative. J Clin Endocrinol Metab 99:4514–4522

    CAS  Article  Google Scholar 

  18. 18.

    Crandall CJ, Larson J, LaCroix A, Cauley JA, LeBoff MS, Li W, LeBlanc ES, Edwards BJ, Manson JE, Ensrud K (2019) Predicting fracture risk in younger postmenopausal women: comparison of the garvan and FRAX risk calculators in the women’s health initiative study. J Gen Intern Med 34:235–242

    Article  Google Scholar 

  19. 19.

    Jiang X, Gruner M, Trémollieres F, Pluskiewicz W, Sornay-Rendu E, Adamczyk P, Schnatz PF (2017) Diagnostic accuracy of FRAX in predicting the 10-year risk of osteoporotic fractures using the USA treatment thresholds: a systematic review and meta-analysis. Bone 99:20–25

    Article  Google Scholar 

  20. 20.

    Stewart TL, Ralston SH (2000) Role of genetic factors in the pathogenesis of osteoporosis. J Endocrinol 166:235–245

    CAS  Article  Google Scholar 

  21. 21.

    Estrada S, Styrkarsdottir K, Evangelou U, Hsu E, Duncan YH, Ntzani EL, Oei EE, Albagha L, Amin OM, Kemp N, Koller JP, Li DL, Liu G, Minster CT, Moayyeri RL, Vandenput A, Willner L, Xiao D, Yerges-Armstrong SM, Zheng LM, Alonso HF, Eriksson N, Kammerer J, Kaptoge CM, Leo SK, Thorleifsson PJ, Wilson G, Wilson SG, Aalto JF, Alen V, Aragaki M, Aspelund AK, Center T, Dailiana JR, Duggan Z, Garcia DJ, Garcia-Giralt M, Giroux N, Hallmans S, Hocking G, Husted LJ, Jameson LB, Khusainova KA, Kim R, Kooperberg GS, Koromila C, Kruk T, Laaksonen M, Lacroix M, Lee AZ, Leung SH, Lewis PC, Masi JR, Mencej-Bedrac L, Nguyen S, Nogues TV, Patel X, Prezelj MS, Rose J, Scollen LM, Siggeirsdottir S, Smith K, Svensson AV, Trompet O, Trummer S, van Schoor O, Woo NM, Zhu J, Balcells K, Brandi S, Buckley ML, Cheng BM, Christiansen S, Cooper C, Dedoussis C, Ford G, Frost I, Goltzman M, Gonzalez-Macias D, Kahonen J, Karlsson M, Khusnutdinova M, Koh E, Kollia JM, Langdahl P, Leslie BL, Lips WD, Ljunggren P, Lorenc O, Marc RS, Mellstrom J, Obermayer-Pietsch D, Olmos B, Pettersson-Kymmer JM, Reid U, Riancho DM, Ridker JA, Rousseau PM, Slagboom F, Tang PE et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genet 44:491–501

    CAS  Article  Google Scholar 

  22. 22.

    Kim SK (2018) Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS ONE 13:e0200785–e0200785

    Article  Google Scholar 

  23. 23.

    Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, Vulpescu NA, Forgetta V, Kleinman A, Mohanty ST, Sergio CM, Quinn J, Nguyen-Yamamoto L, Luco A-L, Vijay J, Simon M-M, Pramatarova A, Medina-Gomez C, Trajanoska K, Ghirardello EJ, Butterfield NC, Curry KF, Leitch VD, Sparkes PC, Adoum A-T, Mannan NS, Komla-Ebri DSK, Pollard AS, Dewhurst HF, Hassall TAD, Beltejar M-JG, Adams DJ, Vaillancourt SM, Kaptoge S, Baldock P, Cooper C, Reeve J, Ntzani EE, Evangelou E, Ohlsson C, Karasik D, Rivadeneira F, Kiel DP, Tobias JH, Gregson CL, Harvey NC, Grundberg E, Goltzman D, Adams DJ, Lelliott CJ, Hinds DA, Ackert-Bicknell CL, Hsu Y-H, Maurano MT, Croucher PI, Williams GR, Bassett JHD, Evans DM, Richards JB (2019) An atlas of genetic influences on osteoporosis in humans and mice. Nature Genet 51:258–266

    CAS  Article  Google Scholar 

  24. 24.

    Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, Zheng J, Gregson CL, Grundberg E, Trajanoska K, Logan JG, Pollard AS, Sparkes PC, Ghirardello EJ, Allen R, Leitch VD, Butterfield NC, Komla-Ebri D, Adoum A-T, Curry KF, White JK, Kussy F, Greenlaw KM, Xu C, Harvey NC, Cooper C, Adams DJ, Greenwood CMT, Maurano MT, Kaptoge S, Rivadeneira F, Tobias JH, Croucher PI, Ackert-Bicknell CL, Bassett JHD, Williams GR, Richards JB, Evans DM (2017) Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet 49:1468–1475

    CAS  Article  Google Scholar 

  25. 25.

    Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, Mook-Kanamori DO, Ham A, Hartwig FP, Evans DS, Joro R, Nedeljkovic I, Zheng HF, Zhu K, Atalay M, Liu CT, Nethander M, Broer L, Porleifsson G, Mullin BH, Handelman SK, Nalls MA, Jessen LE, Heppe DHM, Richards JB, Wang C, Chawes B, Schraut KE, Amin N, Wareham N, Karasik D, Van der Velde N, Ikram MA, Zemel BS, Zhou Y, Carlsson CJ, Liu Y, McGuigan FE, Boer CG, Bønnelykke K, Ralston SH, Robbins JA, Walsh JP, Zillikens MC, Langenberg C, Li-Gao R, Williams FMK, Harris TB, Akesson K, Jackson RD, Sigurdsson G, den Heijer M, van der Eerden BCJ, van de Peppel J, Spector TD, Pennell C, Horta BL, Felix JF, Zhao JH, Wilson SG, de Mutsert R, Bisgaard H, Styrkársdóttir U, Jaddoe VW, Orwoll E, Lakka TA, Scott R, Grant SFA, Lorentzon M, van Duijn CM, Wilson JF, Stefansson K, Psaty BM, Kiel DP, Ohlsson C, Ntzani E, van Wijnen AJ, Forgetta V, Ghanbari M, Logan JG, Williams GR, Bassett JHD, Croucher PI, Evangelou E, Uitterlinden AG, Ackert-Bicknell CL, Tobias JH, Evans DM, Rivadeneira F (2018) Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet 102:88–102

    CAS  Article  Google Scholar 

  26. 26.

    Trajanoska K, Morris JA, Oei L, Zheng HF, Evans DM, Kiel DP, Ohlsson C, Richards JB, Rivadeneira F (2018) Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ 362:k3225

    Article  Google Scholar 

  27. 27.

    Ho-Le TP, Center JR, Eisman JA, Nguyen HT, Nguyen TV (2017) Prediction of bone mineral density and fragility fracture by genetic profiling. J Bone Miner Res 32:285–293

    CAS  Article  Google Scholar 

  28. 28.

    Eriksson J, Evans DS, Nielson CM, Shen J, Srikanth P, Hochberg M, McWeeney S, Cawthon PM, Wilmot B, Zmuda J, Tranah G, Mirel DB, Challa S, Mooney M, Crenshaw A, Karlsson M, Mellstrom D, Vandenput L, Orwoll E, Ohlsson C (2015) Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects. J Bone Miner Res 30:184–194

    Article  Google Scholar 

  29. 29.

    Forgetta V, Keller-Baruch J, Forest M, Durand A, Bhatnagar S, Kemp JP, Nethander M, Evans D, Morris JA, Kiel DP, Rivadeneira F, Johansson H, Harvey NC, Mellström D, Karlsson M, Cooper C, Evans DM, Clarke R, Kanis JA, Orwoll E, McCloskey EV, Ohlsson C, Pineau J, Leslie WD, Greenwood CMT, Richards JB (2020) Development of a polygenic risk score to improve screening for fracture risk: a genetic risk prediction study. PLoS Med 17:e1003152–e1003152

    Article  Google Scholar 

  30. 30.

    Study DW (1998) Design of the women’s health initiative clinical trial and observational study. The women’s health initiative study group. Control Clin Trial 19:61–109

    Article  Google Scholar 

  31. 31.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    CAS  Article  Google Scholar 

  32. 32.

    Schoenfeld D (1982) Partial residuals for the proportional hazards regression model. Biometrika 69:239–241

    Article  Google Scholar 

  33. 33.

    Therneau TM, Grambsch PM, Fleming TR (1990) Martingale-based residuals for survival models. Biometrika 77:147–160

    Article  Google Scholar 

  34. 34.

    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    CAS  Article  Google Scholar 

  35. 35.

    Demler OV, Paynter NP, Cook NR (2015) Tests of calibration and goodness-of-fit in the survival setting. Stat Med 34:1659–1680

    Article  Google Scholar 

  36. 36.

    Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R, National Osteoporosis F (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381

    CAS  Article  Google Scholar 

  37. 37.

    Michaëlsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL (2005) Genetic liability to fractures in the elderly. Arch Intern Med 165:1825–1830

    Article  Google Scholar 

  38. 38.

    Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 51:584–591

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The data/analyses presented in the current publication are based on the use of study data downloaded from the dbGaP website, under phs000200 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000200.v12.p3). The research and analysis described in the current publication were supported by the Genome Acquisition to Analytics Research Core of the Personalized Medicine Center of Biomedical Research Excellence in the Nevada Institute of Personalized Medicine, and the National Supercomputing Institute at the University of Nevada Las Vegas provided facilities for bioinformatical analysis in this study. The research and analysis described in the current publication were supported by a grant from the National Institute of General Medical Sciences (P20GM121325), a grant from the National Institute on Minority Health and Health Disparities of the National Institutes of Health (R15MD010475). The funding sponsors were not involved in the analysis design, genotype imputation, data analysis, interpretation of the analysis results, or the preparation, review, or approval of this manuscript.

Funding

The research was funded by a grant from the National Institute of General Medical Sciences (P20GM121325), a grant from the National Institute on Minority Health and Health Disparities of the National Institutes of Health (R15MD010475). The funding sponsors were not involved in the analysis design, genotype imputation, data analysis, interpretation of the analysis results, or the preparation, review, or approval of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qing Wu.

Ethics declarations

Conflict of interest

Qing Wu and Xiangxue Xiao declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This study analyzed de-identified, secondary data only, and was exempted by the Institutional Review Board at the University of Nevada, Las Vegas.

Ethical Approval

Our study was approved by the institutional review board at the University of Nevada, Las Vegas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 212 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Wu, Q. The Utility of Genetic Risk Score to Improve Performance of FRAX for Fracture Prediction in US Postmenopausal Women. Calcif Tissue Int (2021). https://doi.org/10.1007/s00223-021-00809-4

Download citation

Keywords

  • Genetic risk score (GRS)
  • Bone mineral density (BMD)
  • Single nucleotide polymorphism (SNP)
  • Fracture risk assessment tool (FRAX)