Skip to main content

Effects of High-Intensity Interval Running Versus Cycling on Sclerostin, and Markers of Bone Turnover and Oxidative Stress in Young Men


This study compared sclerostin’s response to impact versus no-impact high-intensity interval exercise in young men and examined the association between exercise-induced changes in sclerostin and markers of bone turnover and oxidative stress. Twenty healthy men (22.3 ± 2.3 years) performed two high-intensity interval exercise trials (crossover design); running on treadmill and cycling on cycle ergometer. Trials consisted of eight 1 min running or cycling intervals at ≥ 90% of maximal heart rate, separated by 1 min passive recovery intervals. Blood samples were collected at rest (pre-exercise), and 5 min, 1 h, 24 h, and 48 h following each trial. Serum levels of sclerostin, cross-linked telopeptide of type I collagen (CTXI), procollagen type I amino-terminal propeptide (PINP), thiobarbituric acid reactive substances (TBARS), and protein carbonyls (PC) were measured. There was no significant time or exercise mode effect for PINP and PC. A significant time effect was found for sclerostin, CTXI, and TBARS with no significant exercise mode effect and no significant time-by-mode interaction. Sclerostin increased from pre- to 5 min post-exercise (47%, p < 0.05) and returned to baseline within 1 h following the exercise. CTXI increased from pre- to 5 min post-exercise (28%, p < 0.05), then gradually returned to baseline by 48 h. TBARS did not increase significantly from pre- to 5 min post-exercise but significantly decreased from 5 min to 48 h post-exercise. There were no significant correlations between exercise-induced changes in sclerostin and any other marker. In young men, sclerostin’s response to high-intensity interval exercise is independent of impact and is not related to changes in bone turnover and oxidative stress markers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Data are available only upon request from the corresponding author for researchers who are eligible for accessing confidential data, as all data of this study are restricted due to the Brock University Research Ethics Board privacy policy.


  1. 1.

    Kohrt WM, Barry DW, Schwartz RS (2009) Muscle forces or gravity: what predominates mechanical loading on bone? Med Sci Sports Exerc 41:2050–2055.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Banfi G, Lombardi G, Colombini A, Lippi G (2010) Bone metabolism markers in sports medicine. Sport Med 40:697–714.

    Article  Google Scholar 

  3. 3.

    Mezil YA, Allison D, Kish K, Ditor D, Ward WE, Tsiani E, Klentrou P (2015) Response of bone turnover markers and cytokines to high-intensity low-impact exercise. Med Sci Sports Exerc 47:1495–1502.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Kouvelioti R, Kurgan N, Falk B, Ward WE, Josse AR, Klentrou P (2018) Response of sclerostin and bone turnover markers to high-intensity interval exercise in young women: does impact matter? BioMed Res Int 2018:8

    Article  CAS  Google Scholar 

  5. 5.

    Sapir-Koren R, Livshits G (2014) Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption–formation cycles? Osteoporos Int 25:2685–2700.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Moester MJC, Papapoulos SE, Löwik CWGM, van Bezooijen RL (2010) Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 87:99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Spatz J, Wein M, Gooi J, Qu Y, Garr J, Liu S, Barry K, Uda Y, Lai F, Dedic C (2015) The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem 290:16744–16758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J Biol Chem 283:5866–5875.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Falk B, Haddad F, Klentrou P, Ward W, Kish K, Mezil Y, Radom-Aizik S (2016) Differential sclerostin and parathyroid hormone response to exercise in boys and men. Osteoporos Int 27:1245–1249.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Pickering M-E, Simon M, Sornay-Rendu E, Chikh K, Carlier M-C, Raby A-L, Szulc P, Confavreux CB (2017) Serum sclerostin increases after acute physical activity. Calcif Tissue Int 101:170–173.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Gombos GC, Bajsz V, Pék E, Schmidt B, Sió E, Molics B, Betlehem J (2016) Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskelet Disord 17:254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kerschan-Schindl K, Thalmann MM, Weiss E, Tsironi M, Föger-Samwald U, Meinhart J, Skenderi K, Pietschmann P (2015) Changes in serum levels of myokines and Wnt-antagonists after an ultramarathon race. PLoS ONE 10:e0132478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Costa AG, Walker MD, Zhang CA, Cremers S, Dworakowski E, McMahon DJ, Liu G, Bilezikian JP (2013) Circulating sclerostin levels and markers of bone turnover in chinese-american and white women. J Clin Endocrinol Metab 98:4736–4743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Durosier C, van Lierop A, Ferrari S, Chevalley T, Papapoulos S, Rizzoli R (2013) Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J Clin Endocrinol Metab 98:3873–3883.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95:2248–2253.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Kawamura T, Muraoka I (2018) Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants 7:119.

    Article  CAS  PubMed Central  Google Scholar 

  17. 17.

    Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15:468–477.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Manolagas SC, Almeida M (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Kang J, Boonanantanasarn K, Baek K, Woo KM, Ryoo H-M, Baek J h, Kim G-S (2015) Hyperglycemia increases the expression levels of sclerostin in a reactive oxygen species- and tumor necrosis factor-alpha-dependent manner. J Periodontal Implant Sci 45:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 year history. Dyn Med 8:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bloomer RJ, Goldfarb AH (2004) Anaerobic exercise and oxidative stress: a review. Can J Appl Physiol 29:245–263.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Steinberg JG, Ba A, Brégeon F, Delliaux S, Jammes Y (2007) Cytokine and oxidative responses to maximal cycling exercise in sedentary subjects. Med Sci Sports Exerc 39:964–968.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Bloomer R, Goldfarb A, Wideman L, McKenzie M, Consitt L (2005) Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. J Strength Cond Res 19:276.

    Article  PubMed  Google Scholar 

  24. 24.

    Borg GA (1973) Perceived exertion: a note on “history” and methods. Med Sci Sports 5:90–93

    CAS  PubMed  Google Scholar 

  25. 25.

    Levine RL, Williams JA, Stadtman EP, Shacter E (1994) [37] Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357.

    Article  CAS  Google Scholar 

  26. 26.

    Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.

    Article  CAS  Google Scholar 

  28. 28.

    Kei S (1978) Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 90:37–43.

    Article  Google Scholar 

  29. 29.

    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358.

    Article  CAS  Google Scholar 

  30. 30.

    Kargotich S, Goodman C, Keast D, Morton AR (1998) The influence of exercise-induced plasma volume changes on the interpretation of biochemical parameters used for monitoring exercise, training and sport. Sport Med 26:101–117.

    Article  CAS  Google Scholar 

  31. 31.

    Weinstein Y, Bediz C, Dotan R, Falk B (1998) Reliability of peak-lactate, heart rate, and plasma volume following the Wingate test. Med Sci Sports Exerc 30:1456–1460

    CAS  PubMed  Google Scholar 

  32. 32.

    Van Beaumont W (1972) Evaluation of hemoconcentration from hematocrit measurements. J Appl Physiol 32:712–713.

    Article  PubMed  Google Scholar 

  33. 33.

    Rogers RS, Dawson AW, Wang Z, Thyfault JP, Hinton PS (2011) Acute response of plasma markers of bone turnover to a single bout of resistance training or plyometrics. J Appl Physiol 111:1353–1360.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    van Beaumont W, Strand JC, Petrofsky JS, Hipskind SG, Greenleaf JE (1973) Changes in total plasma content of electrolytes and proteins with maximal exercise. J Appl Physiol 34:102–106.

    Article  PubMed  Google Scholar 

  35. 35.

    de Oliveira Teixeira A, Franco OS, Borges MM, Martins CN, Guerreiro LF, da Rosa CE, da Silva Paulitsch F, Perez W, da Silva AM, Signori LU (2014) The importance of adjustments for changes in plasma volume in the interpretation of hematological and inflammatory responses after resistance exercise. J Exerc Physiol 17:72–83

    Google Scholar 

  36. 36.

    Kirmani S, Amin S, McCready LK, Atkinson EJ, Melton LJ, Müller R, Khosla S (2012) Sclerostin levels during growth in children. Osteoporos Int 23:1123–1130.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Mödder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, Melton LJ, Khosla S (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26:373–379.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Dekker J, Nelson K, Kurgan N, Falk B, Josse A, Klentrou P (2017) Wnt signaling–related osteokines and transforming growth factors before and after a single bout of plyometric exercise in child and adolescent females. Pediatr Exerc Sci 29:504–512.

    Article  PubMed  Google Scholar 

  39. 39.

    Klentrou P, Angrish K, Awadia N, Kurgan N, Kouvelioti R, Falk B (2018) Wnt signaling–related osteokines at rest and following plyometric exercise in prepubertal and early pubertal boys and girls. Pediatr Exerc Sci.

    Article  PubMed  Google Scholar 

  40. 40.

    Heinonen I, Kemppainen J, Kaskinoro K, Langberg H, Knuuti J, Boushel R, Kjaer M, Kalliokoski KK (2013) Bone blood flow and metabolism in humans: effect of muscular exercise and other physiological perturbations. J Bone Miner Res 28:1068–1074.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Farquhar B, Kenney W (1997) Anti-inflamatory drugs, kidney function, and exercise. Sport Sci Exch 11:1–6

    Google Scholar 

  42. 42.

    Fairfield H, Rosen CJ, Reagan MR (2017) Connecting bone and fat: the potential role for sclerostin. Curr Mol Biol Rep 3:114–121.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Fulzele K, Lai F, Dedic C, Saini V, Uda Y, Shi C, Tuck P, Aronson JL, Liu X, Spatz JM, Wein MN, Divieti Pajevic P (2017) Osteocyte-secreted Wnt signaling inhibitor sclerostin contributes to beige adipogenesis in peripheral fat depots. J Bone Miner Res 32:373–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Morgan AL, Weiss J, Kelley ET (2015) Bone turnover response to acute exercise with varying impact levels: a preliminary investigation. Int J Exerc Sci 8:154–163

    Google Scholar 

  45. 45.

    Ardawi M-SM, Rouzi AA, Qari MH (2012) Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: a cross-sectional and a longitudinal study. J Clin Endocrinol Metab 97:3691–3699.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Grasso D, Corsetti R, Lanteri P, Di Bernardo C, Colombini A, Graziani R, Banfi G, Lombardi G (2015) Bone-muscle unit activity, salivary steroid hormones profile, and physical effort over a 3-week stage race. Scand J Med Sci Sports 25:70–80.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Gaeini AA, Rahnama N, Hamedinia MR (2006) Effects of vitamin E supplementation on oxidative stress at rest and after exercise to exhaustion in athletic students. J Sports Med Phys Fitness 46:458–461

    CAS  PubMed  Google Scholar 

  48. 48.

    Bloomer R, Davis P, Consitt L, Wideman L (2007) Plasma protein carbonyl response to increasing exercise duration in aerobically trained men and women. Int J Sports Med 28:21–25.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Chevion S, Moran DS, Heled Y, Shani Y, Regev G, Abbou B, Berenshtein E, Stadtman ER, Epstein Y (2003) Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci USA 100:5119–5123.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189:41–54

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Veskoukis AS, Nikolaidis MG, Kyparos A, Kouretas D (2009) Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Radic Biol Med 47:1371–1374.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Parker L, Trewin A, Levinger I, Shaw CS, Stepto NK (2018) Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling. J Sci Med Sport 21:416–421.

    Article  PubMed  Google Scholar 

  53. 53.

    Ashton T, Rowlands CC, Jones E, Young IS, Jackson SK, Davies B, Peters JR (1998) Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol 77:498–502.

    Article  CAS  Google Scholar 

Download references


This study was funded by the National Sciences and Engineering Research Council of Canada (NSERC) grant to P. Klentrou (grant # 2015-04424). R. Kouvelioti holds an Ontario Trillium Scholarship. W. Ward holds a Canada Research Chair in Bone and Muscle Development. The authors would like to thank the participants for participating in this study, all volunteers for their assistance in different parts of the study (D. Brown, R. Sweeney, M. Nasato, A. Theocharidis, S. Pilakka, D. Szkaradek), the phlebotomists (especially C. Watt), and lab coordinators (R. Dotan, J. Gabrie) for their guidance.

Author information




RK designed the study, completed all data collection, and prepared the first draft of the paper. PL contributed to the analysis of blood samples. BF, WEW, and ARJ contributed to the experimental design and the interpretation of the data. PK was the supervisor of the research and contributed to the experimental design, data analysis, and interpretation of the data. She is the guarantor. All authors revised the paper critically for intellectual content and approved the final version. All authors agree to be accountable for the work and to ensure that any questions relating to the accuracy and integrity of the paper are investigated and properly resolved.

Corresponding author

Correspondence to P. Klentrou.

Ethics declarations

Conflict of interest

R. Kouvelioti, P. LeBlanc, B. Falk, W.E. Ward, A.R. Josse and P. Klentrou have no conflict of interest to declare.

Human and Animal Rights and Informed Consent

The study was conducted in accordance with the Declaration of Helsinki and received ethics approval from our institutional Research Ethics Board (File # 16-016). All participants agreed to participate in this study by signing a consent form.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kouvelioti, R., LeBlanc, P., Falk, B. et al. Effects of High-Intensity Interval Running Versus Cycling on Sclerostin, and Markers of Bone Turnover and Oxidative Stress in Young Men. Calcif Tissue Int 104, 582–590 (2019).

Download citation


  • Exercise
  • Sclerostin
  • Bone turnover
  • Oxidative stress