Skip to main content

Advertisement

Log in

The C-Terminal Intact Forms of Periostin (iPTN) Are Surrogate Markers for Osteolytic Lesions in Experimental Breast Cancer Bone Metastasis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Periostin is an extracellular matrix protein that actively contributes to tumor progression and metastasis. Here, we hypothesized that it could be a marker of bone metastasis formation. To address this question, we used two polyclonal antibodies directed against the whole molecule or its C-terminal domain to explore the expression of intact and truncated forms of periostin in the serum and tissues (lung, heart, bone) of wild-type and periostin-deficient mice. In normal bones, periostin was expressed in the periosteum and specific periostin proteolytic fragments were found in bones, but not in soft tissues. In animals bearing osteolytic lesions caused by 4T1 cells, C-terminal intact periostin (iPTN) expression disappeared at the invasive front of skeletal tumors where bone-resorbing osteoclasts were present. In vitro, we found that periostin was a substrate for osteoclast-derived cathepsin K, generating proteolytic fragments that were not recognized by anti-periostin antibodies directed against iPTN. In vivo, using an in-house sandwich immunoassay aimed at detecting iPTN only, we observed a noticeable reduction of serum periostin levels (− 26%; P < 0.002) in animals bearing osteolytic lesions caused by 4T1 cells. On the contrary, this decrease was not observed in women with breast cancer and bone metastases when periostin was measured with a human assay detecting total periostin. Collectively, these data showed that mouse periostin was degraded at the bone metastatic sites, potentially by cathepsin K, and that the specific measurement of iPTN in serum should assist in detecting bone metastasis formation in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Cui D, Huang Z, Liu Y, Ouyang G (2017) The multifaceted role of periostin in priming the tumor microenvironments for tumor progression. Cell Mol Life Sci 74:4287–4291

    Article  CAS  PubMed  Google Scholar 

  3. Nakazawa Y, Taniyama Y, Sanada F, Morishita R, Nakamori S, Morimoto K, Yeung KT, Yang J (2018) Periostin blockade overcomes chemoresistance via restricting the expansion of mesenchymal tumor subpopulations in breast cancer. Sci Rep 8:4013

    Article  PubMed Central  PubMed  Google Scholar 

  4. Brown JE, Cook RJ, Major P, Lipton A, Saad F, Smith M, Lee KA, Zheng M, Hei YJ, Coleman RE (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97:59–69

    Article  CAS  PubMed  Google Scholar 

  5. Coleman R, Costa L, Saad F, Cook R, Hadji P, Terpos E, Garnero P, Brown J, Body JJ, Smith M, Lee KA, Major P, Dimopoulos M, Lipton A (2011) Consensus on the utility of bone markers in the malignant bone disease setting. Crit Rev Oncol Hematol 80:411–432

    Article  PubMed  Google Scholar 

  6. Liu AY, Zheng H, Ouyang G (2014) Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol 37:150–156

    Article  PubMed  Google Scholar 

  7. Wu T, Wu S, Ouyang G (2014) Periostin: a new extracellular regulator of obesity-induced hepatosteatosis. Cell Metab 20:562–564

    Article  CAS  PubMed  Google Scholar 

  8. Venning FA, Wullkopf L, Erler JT (2015) Targeting ECM disrupts cancer progression. Front Oncol 5:224

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M, Shao R, Anderson RM, Rich JN, Wang XF (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5:329–339

    Article  CAS  PubMed  Google Scholar 

  10. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89

    Article  CAS  Google Scholar 

  11. Merle B, Garnero P (2012) The multiple facets of periostin in bone metabolism. Osteoporos Int 23:1199–1212

    Article  CAS  PubMed  Google Scholar 

  12. Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ, Ferrari SL (2009) The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284:35939–35950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gerbaix M, Vico L, Ferrari SL, Bonnet N (2015) Periostin expression contributes to cortical bone loss during unloading. Bone 71:94–100

    Article  CAS  PubMed  Google Scholar 

  14. Bonnet N, Conway SJ, Ferrari SL (2012) Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci USA 109:15048–15053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lipton A, Ali SM, Leitzel K, Demers L, Chinchilli V, Engle L, Harvey HA, Brady C, Nalin CM, Dugan M, Carney W, Allard J (2002) Elevated serum Her-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J Clin Oncol 20:1467–1472

    Article  CAS  PubMed  Google Scholar 

  16. Rousseau JC, Sornay-Rendu E, Bertholon C, Chapurlat R, Garnero P (2014) Serum periostin is associated with fracture risk in postmenopausal women: a 7-year prospective analysis of the OFELY study. J Clin Endocrinol Metab 99:2533–2539

    Article  CAS  PubMed  Google Scholar 

  17. Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindsley A, Rogers R, Chen Z, Maeda M, Kruzynska-Frejtag A, Feng JQ, Conway SJ (2005) Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25:11131–11144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Coutu DL, Wu JH, Monette A, Rivard GE, Blostein MD, Galipeau J (2008) Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem 283:17991–18001

    Article  CAS  PubMed  Google Scholar 

  19. Annis DS, Ma H, Balas DM, Kumfer KT, Sandbo N, Potts GK, Coon JJ, Mosher DF (2015) Absence of vitamin K-dependent gamma-carboxylation in human periostin extracted from fibrotic lung or secreted from a cell line engineered to optimize gamma-carboxylation. PLoS ONE 10:e0135374

    Article  PubMed Central  PubMed  Google Scholar 

  20. Contie S, Voorzanger-Rousselot N, Litvin J, Bonnet N, Ferrari S, Clezardin P, Garnero P (2010) Development of a new ELISA for serum periostin: evaluation of growth-related changes and bisphosphonate treatment in mice. Calcif Tissue Int 87:341–350

    Article  CAS  PubMed  Google Scholar 

  21. Contie S, Voorzanger-Rousselot N, Litvin J, Clezardin P, Garnero P (2011) Increased expression and serum levels of the stromal cell-secreted protein periostin in breast cancer bone metastases. Int J Cancer 128:352–360

    Article  CAS  PubMed  Google Scholar 

  22. Rousseau JC, Sornay-Rendu E, Bertholon C, Garnero P, Chapurlat R (2015) Serum periostin is associated with prevalent knee osteoarthritis and disease incidence/progression in women: the OFELY study. Osteoarthr Cartil 23:1736–1742

    Article  CAS  Google Scholar 

  23. Sasaki H, Yu CY, Dai M, Tam C, Loda M, Auclair D, Chen LB, Elias A (2003) Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer. Breast Cancer Res Treat 77:245–252

    Article  CAS  PubMed  Google Scholar 

  24. Sugiura T, Takamatsu H, Kudo A, Amann E (1995) Expression and characterization of murine osteoblast-specific factor 2 (OSF-2) in a baculovirus expression system. Protein Expr Purif 6:305–311

    Article  CAS  PubMed  Google Scholar 

  25. Novinec M, Lenarcic B (2013) Cathepsin K: a unique collagenolytic cysteine peptidase. Biol Chem 394:1163–1179

    Article  CAS  PubMed  Google Scholar 

  26. Bonnet N, Brun J, Rousseau JC, Duong LT, Ferrari SL (2017) Cathepsin K controls cortical bone formation by degrading periostin. J Bone Miner Res 32:1432–1441

    Article  CAS  PubMed  Google Scholar 

  27. Garnero P, Bonnet N, Ferrari SL (2017) Development of a new immunoassay for human cathepsin K-generated periostin fragments as a serum biomarker for cortical bone. Calcif Tissue Int 101:501–509

    Article  CAS  PubMed  Google Scholar 

  28. Hsu YH, Hsing CH, Li CF, Chan CH, Chang MC, Yan JJ, Chang MS (2012) Anti-IL-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. J Immunol 188:1981–1991

    Article  CAS  PubMed  Google Scholar 

  29. Littlewood-Evans AJ, Bilbe G, Bowler WB, Farley D, Wlodarski B, Kokubo T, Inaoka T, Sloane J, Evans DB, Gallagher JA (1997) The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res 57:5386–5390

    CAS  PubMed  Google Scholar 

  30. Duong LT, Wesolowski GA, Leung P, Oballa R, Pickarski M (2014) Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol Cancer Ther 13:2898–2909

    Article  CAS  PubMed  Google Scholar 

  31. Stegemann C, Didangelos A, Barallobre-Barreiro J, Langley SR, Mandal K, Jahangiri M, Mayr M (2013) Proteomic identification of matrix metalloproteinase substrates in the human vasculature. Circ Cardiovasc Genet 6:106–117

    Article  CAS  PubMed  Google Scholar 

  32. Hou P, Troen T, Ovejero MC, Kirkegaard T, Andersen TL, Byrjalsen I, Ferreras M, Sato T, Shapiro SD, Foged NT, Delaisse JM (2004) Matrix metalloproteinase-12 (MMP-12) in osteoclasts: new lesson on the involvement of MMPs in bone resorption. Bone 34:37–47

    Article  CAS  PubMed  Google Scholar 

  33. Le Gall C, Bellahcene A, Bonnelye E, Gasser JA, Castronovo V, Green J, Zimmermann J, Clezardin P (2007) A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res 67:9894–9902

    Article  PubMed  Google Scholar 

  34. Chen B, Platt MO (2011) Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer. J Transl Med 9:109

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kleer CG, Bloushtain-Qimron N, Chen YH, Carrasco D, Hu M, Yao J, Kraeft SK, Collins LC, Sabel MS, Argani P, Gelman R, Schnitt SJ, Krop IE, Polyak K (2008) Epithelial and stromal cathepsin K and CXCL14 expression in breast tumor progression. Clin Cancer Res 14:5357–5367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tumminello FM, Flandina C, Crescimanno M, Leto G (2008) Circulating cathepsin K and cystatin C in patients with cancer related bone disease: clinical and therapeutic implications. Biomed Pharmacother 62:130–135

    Article  CAS  PubMed  Google Scholar 

  37. Garnero P, Grimaux M, Seguin P, Delmas PD (1994) Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J Bone Miner Res 9:255–264

    Article  CAS  PubMed  Google Scholar 

  38. Rehder DS, Gundberg CM, Booth SL, Borges CR (2015) Gamma-carboxylation and fragmentation of osteocalcin in human serum defined by mass spectrometry. Mol Cell Proteom 14:1546–1555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Madeleine Lachize and Juliette Cicchini for their technical assistance. We thank Dr. Isabelle Zanella-Cleon and the team of the mass spectrometry platform facility (Protein Science Facility, SFR Biosciences UMS3444/US8) for LC–MS/MS sequencing of periostin proteolytic fragments.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Study design: JCR and PG. Study conduct: EG and JCR. Data collection: CB, MM, EG, OB, SG, EB, NB, MC, AS, CT, NL, KL. Data analysis: EG, JCR, CB, MM, OB, APM, SG, EB, NB. Data interpretation: EG, JCR, RC, PG, AL, DH, NB, SF and PC. Drafting manuscript: EG, JCR, and PC. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jean-Charles Rousseau.

Ethics declarations

Conflict of interest

Evelyne Gineyts, Nicolas Bonnet, Cindy Bertholon, Marjorie Millet, Aurélie Pagnon-Minot, Olivier Borel, Sandra Geraci, Edith Bonnelye, Martine Croset, Ali Suhail, Cristina Truica, Nicholas Lamparella, Kim Leitzel, Daniel Hartmann, Roland Chapurlat, Allan Lipton, Patrick Garnero, Serge Ferrari, Philippe Clézardin, and Jean-Charles Rousseau declare that they have no conflict of interest with the content of this article.

Human and Animal Rights and Informed Consent

All patients provided written informed consent. Animal studies were approved by local ethical committees.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gineyts, E., Bonnet, N., Bertholon, C. et al. The C-Terminal Intact Forms of Periostin (iPTN) Are Surrogate Markers for Osteolytic Lesions in Experimental Breast Cancer Bone Metastasis. Calcif Tissue Int 103, 567–580 (2018). https://doi.org/10.1007/s00223-018-0444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0444-y

Keywords

Navigation