Calcified Tissue International

, Volume 102, Issue 2, pp 227–250 | Cite as

Bone-Targeted Therapies in Cancer-Induced Bone Disease

  • Sofia Sousa
  • Philippe Clézardin


Cancer-induced bone disease is a major source of morbidity and mortality in cancer patients. Thus, effective bone-targeted therapies are essential to improve disease-free, overall survival and quality of life of cancer patients with bone metastases. Depending of the cancer-type, bone metastases mainly involve the modulation of osteoclast and/or osteoblast activity by tumour cells. To inhibit metastatic bone disease effectively, it is imperative to understand its underlying mechanisms and identify the target cells for therapy. If the aim is to prevent bone metastasis, it is essential to target not only bone metastatic features in the tumour cells, but also tumour-nurturing bone microenvironment properties. The currently available bone-targeted agents mainly affect osteoclasts, inhibiting bone resorption (e.g. bisphosphonates, denosumab). Some agents targeting osteoblasts begin to emerge which target osteoblasts (e.g. romosozumab), activating bone formation. Moreover, certain drugs initially thought to target only osteoclasts are now known to have a dual action (activating osteoblasts and inhibiting osteoclasts, e.g. proteasome inhibitors). This review will focus on the evolution of bone-targeted therapies for the treatment of cancer-induced bone disease, summarizing preclinical and clinical findings obtained with anti-resorptive and bone anabolic therapies.


Bone metastasis RANKL Sclerostin DKK1 Bisphosphonates mTOR inhibitors Denosumab Romosozumab Radium 223 Cathepsin k inhibitors c-Src inhibitors 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gerratana L, Fanotto V, Bonotto M, Bolzonello S, Minisini AM, Fasola G, Puglisi F (2015) Pattern of metastasis and outcome in patients with breast cancer. Clin Exp Metastasis 32:125–133PubMedCrossRefGoogle Scholar
  2. 2.
    Sternberg C, Baskin-Bey E, Watson M, Worsfold A, Rider A, Tombal B (2013) Treatment patterns and characteristics of European patients with castration-resistant prostate cancer. BMC Urol 13:58PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hoffmann NE, Gillett MD, Cheville JC, Lohse CM, Leibovich BC, Blute ML (2008) Differences in organ system of distant metastasis by renal cell carcinoma subtype. J Urol 179:474–477PubMedCrossRefGoogle Scholar
  4. 4.
    Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:165–176PubMedCrossRefGoogle Scholar
  5. 5.
    Mirabello L, Troisi RJ, Savage SA (2009) International osteosarcoma incidence patterns in children and adolescents, middle ages, and elderly persons. Int J Cancer 125:229–234PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gnant M, Baselga J, Rugo HS, Noguchi S, Burris HA, Piccart M, Hortobagyi GN, Eakle J, Mukai H, Iwata H, Geberth M, Hart LL, Hadji P, El-Hashimy M, Rao S, Taran T, Sahmoud T, Lebwohl D, Campone M, Pritchard KI (2013) Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2. J Natl Cancer Inst 105:654–663PubMedCrossRefGoogle Scholar
  7. 7.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146PubMedCrossRefGoogle Scholar
  9. 9.
    Cox TR, Rumney RMH, Schoof EM, Perryman L, Høye AM, Agrawal A, Bird D, Latif NA, Forrest H, Evans HR, Huggins ID, Lang G, Linding R, Gartland A, Erler JT (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522:106–110PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    González Á, García de Durango C, Alonso V, Bravo B, Rodríguez de Gortázar A, Wells A, Forteza J, Vidal-Vanaclocha F (2017) Distinct osteomimetic response of androgen-dependent and independent human prostate cancer cells to mechanical action of fluid flow: prometastatic implications. Prostate 77:321–333PubMedCrossRefGoogle Scholar
  11. 11.
    Tan C, Li G, Tan L, Du X, Li X, He R, Wang Q, Feng Y (2016) Breast cancer cells obtain an osteomimetic feature via epithelial-mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction. Oncotarget 7:79688–79705PubMedPubMedCentralGoogle Scholar
  12. 12.
    Guise TA (2002) The vicious cycle of bone metastases. J Musculoskelet Neuronal Interact 2:570–572PubMedGoogle Scholar
  13. 13.
    Plotkin LI, Bivi N, Bellido T (2011) A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice. Bone 49:122–127PubMedCrossRefGoogle Scholar
  14. 14.
    Plotkin LI, Manolagas SC, Bellido T (2006) Dissociation of the pro-apoptotic effects of bisphosphonates on osteoclasts from their anti-apoptotic effects on osteoblasts/osteocytes with novel analogs. Bone 39:443–452PubMedCrossRefGoogle Scholar
  15. 15.
    Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J (2011) Biochemical and molecular mechanisms of action of bisphosphonates. Bone 49:34–41PubMedCrossRefGoogle Scholar
  16. 16.
    Mönkkönen H, Auriola S, Lehenkari P, Kellinsalmi M, Hassinen IE, Vepsäläinen J, Mönkkönen J (2006) A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br J Pharmacol 147:437–445PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Daubiné F, Le Gall C, Gasser J, Green J, Clézardin P (2007) Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J Natl Cancer Inst 99:322–330PubMedCrossRefGoogle Scholar
  18. 18.
    Van Der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Löwik C, Papapoulos S (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 98:698–705PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hiraga T, Williams PJ, Mundy GR, Yoneda T (2001) The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Res 61:4418–4424PubMedGoogle Scholar
  20. 20.
    Yuen T, Stachnik A, Iqbal J, Sgobba M, Gupta Y, Lu P, Colaianni G, Ji Y, Zhu L-, Kim S-, Li J, Liu P, Izadmehr S, Sangodkar J, Bailey J, Latif Y, Mujtaba S, Epstein S, Davies TF, Bian Z, Zallone A, Aggarwal AK, Haider S, New MI, Sun L, Narla G, Zaidi M (2014) Bisphosphonates inactivate human EGFRs to exert antitumor actions. Proc Natl Acad Sci USA 111:17989–17994PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Räikkönen J, Mönkkönen H, Auriola S, Mönkkönen J (2010) Mevalonate pathway intermediates downregulate zoledronic acid-induced isopentenyl pyrophosphate and ATP analog formation in human breast cancer cells. Biochem Pharmacol 79:777–783PubMedCrossRefGoogle Scholar
  22. 22.
    Ory B, Blanchard F, Battaglia S, Gouin F, Redini F, Heymann D (2007) Zoledronic acid activates the DNA S-phase checkpoint and induces osteosarcoma cell death characterized by apoptosis-inducing factor and endonuclease-G translocation independently of p53 and retinoblastoma status. Mol Pharmacol 71:333–343PubMedCrossRefGoogle Scholar
  23. 23.
    Brown HK, Ottewell PD, Evans CA, Coleman RE, Holen I (2012) A single administration of combination therapy inhibits breast tumour progression in bone and modifies both osteoblasts and osteoclasts. J Bone Oncol 1:47–56PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Coscia M, Quaglino E, Iezzi M, Curcio C, Pantaleoni F, Riganti C, Holen I, Mönkkönen H, Boccadoro M, Forni G, Musiani P, Bosia A, Cavallo F, Massaia M (2010) Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J Cell Mol Med 14:2803–2815PubMedCrossRefGoogle Scholar
  25. 25.
    Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67:11438–11446PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Junankar S, Shay G, Jurczyluk J, Ali N, Down J, Pocock N, Parker A, Nguyen A, Sun S, Kashemirov B, McKenna CE, Croucher PI, Swarbrick A, Weilbaecher K, Phan TG, Rogers MJ (2015) Real-time intravital imaging establishes tumor-associated Macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov 5:35–42PubMedCrossRefGoogle Scholar
  27. 27.
    Kalyan S, Chandrasekaran V, Quabius ES, Lindhorst TK, Kabelitz D (2014) Neutrophil uptake of nitrogen-bisphosphonates leads to the suppression of human peripheral blood γδ T cells. Cell Mol Life Sci 71:2335–2346PubMedCrossRefGoogle Scholar
  28. 28.
    Hewitt RE, Lissina A, Green AE, Slay ES, Price DA, Sewell AK (2005) The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood γδ T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 139:101–111PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cabillic F, Toutirais O, Lavoué V, De La Pintière CT, Daniel P, Rioux-Leclerc N, Turlin B, Mönkkönen H, Mönkkönen J, Boudjema K, Catros V, Bouet-Toussaint F (2010) Aminobisphosphonate-pretreated dendritic cells trigger successful Vγ9Vδ2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunol Immunother 59:1611–1619PubMedCrossRefGoogle Scholar
  30. 30.
    Gutman D, Epstein-Barash H, Tsuriel M, Golomb G (2011) Alendronate liposomes for antitumor therapy: activation of γδ T cells and inhibition of tumor growth. Adv Exp Med Biol 733:165–179CrossRefGoogle Scholar
  31. 31.
    Benzaïd I, Mönkkönen H, Stresing V, Bonnelye E, Green J, Mönkkönen J, Touraine JL, Clézardin P (2011) High phosphoantigen levels in bisphosphonate-treated human breast tumors promote Vγ9Vδ2 T-cell chemotaxis and cytotoxicity in vivo. Cancer Res 71:4562–4572PubMedCrossRefGoogle Scholar
  32. 32.
    Haider MT, Hunter KD, Robinson SP, Graham TJ, Corey E, Dear TN, Hughes R, Brown NJ, Holen I (2015) Rapid modification of the bone microenvironment following short-term treatment with Cabozantinib in vivo. Bone 81:581–592PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Clézardin P (2007) Frequent low-dose bisphosphonate therapy. Bone 41:901–902PubMedCrossRefGoogle Scholar
  34. 34.
    Ottewell PD, Wang N, Brown HK, Reeves KJ, Fowles CA, Croucher PI, Eaton CL, Holen I (2014) Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 20:2922–2932PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2015) Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386:1353–1361CrossRefGoogle Scholar
  36. 36.
    Winter MC, Wilson C, Syddall SP, Cross SS, Evans A, Ingram CE, Jolley IJ, Hatton MQ, Freeman JV, Mori S, Holen I, Coleman RE (2013) Neoadjuvant chemotherapy with or without zoledronic acid in early breast cancer-a randomized biomarker pilot study. Clin Cancer Res 19:2755–2765PubMedCrossRefGoogle Scholar
  37. 37.
    Foroni C, Milan M, Strina C, Cappelletti M, Fumarola C, Bonelli M, Bertoni R, Ferrero G, Maldotti M, Takano E, Andreis D, Venturini S, Brugnoli G, Petronini PG, Zanoni V, Pritzker L, Pritzker K, Parissenti A, Santini D, Fox SB, Bottini A, Generali D (2014) Pure anti-tumor effect of zoledronic acid in naïve bone-only metastatic and locally advanced breast cancer: proof from the “biological window therapy”. Breast Cancer Res Treat 144:113–121PubMedCrossRefGoogle Scholar
  38. 38.
    Santini D, Zoccoli A, Gregorj C, Di Cerbo M, Iuliani M, Pantano F, Zamarchi R, Sergi F, Flammia G, Buscarini M, Rizzo S, Cicero G, Russo A, Vincenzi B, Avvisati G, Tonini G (2013) Zoledronic acid induces a significant decrease of circulating endothelial cells and circulating endothelial precursor cells in the early prostate cancer neoadjuvant setting. Oncology 85:342–347PubMedCrossRefGoogle Scholar
  39. 39.
    Kroep JR, Charehbili A, Coleman RE, Aft RL, Hasegawa Y, Winter MC, Weilbaecher K, Akazawa K, Hinsley S, Putter H, Liefers GJ, Nortier JWR, Kohno N (2016) Effects of neoadjuvant chemotherapy with or without zoledronic acid on pathological response: a meta-analysis of randomised trials. Eur J Cancer 54:57–63PubMedCrossRefGoogle Scholar
  40. 40.
    Paterson AHG, Anderson SJ, Lembersky BC, Fehrenbacher L, Falkson CI, King KM, Weir LM, Brufsky AM, Dakhil S, Lad T, Baez-Diaz L, Gralow JR, Robidoux A, Perez EA, Zheng P, Geyer CE, Swain SM, Costantino JP, Mamounas EP, Wolmark N (2012) Oral clodronate for adjuvant treatment of operable breast cancer (National Surgical Adjuvant Breast and Bowel Project protocol B-34): a multicentre, placebo-controlled, randomised trial. Lancet Oncol 13:734–742PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Brufsky AM, Harker WG, Beck JT, Bosserman L, Vogel C, Seidler C, Jin L, Warsi G, Argonza-Aviles E, Hohneker J, Ericson SG, Perez EA (2012) Final 5-year results of Z-FAST trial: adjuvant zoledronic acid maintains bone mass in postmenopausal breast cancer patients receiving letrozole. Cancer 118:1192–1201PubMedCrossRefGoogle Scholar
  42. 42.
    Coleman R, De Boer R, Eidtmann H, Llombart A, Davidson N, Neven P, Von Minckwitz G, Sleeboom HP, Forbes J, Barrios C, Frassoldati A, Campbell I, Paija O, Martin N, Modi A, Bundred N (2013) Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann Oncol 24:398–405PubMedCrossRefGoogle Scholar
  43. 43.
    Coleman R, Cameron D, Dodwell D, Bell R, Wilson C, Rathbone E, Keane M, Gil M, Burkinshaw R, Grieve R, Barrett-Lee P, Ritchie D, Liversedge V, Hinsley S, Marshall H (2014) Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol 15:997–1006PubMedCrossRefGoogle Scholar
  44. 44.
    Gnant M, Mlineritsch B, Stoeger H, Luschin-Ebengreuth G, Knauer M, Moik M, Jakesz R, Seifert M, Taucher S, Bjelic-Radisic V, Balic M, Eidtmann H, Eiermann W, Steger G, Kwasny W, Dubsky P, Selim U, Fitzal F, Hochreiner G, Wette V, Sevelda P, Ploner F, Bartsch R, Fesl C, Greil R (2015) Zoledronic acid combined with adjuvant endocrine therapy of tamoxifen versus anastrozol plus ovarian function suppression in premenopausal early breast cancer: final analysis of the Austrian Breast and Colorectal Cancer Study Group Trial 12. Ann Oncol 26:313–320PubMedCrossRefGoogle Scholar
  45. 45.
    Rodrigues P, Hering FO, Meller A (2011) Adjuvant effect of IV clodronate on the delay of bone metastasis in high-risk prostate cancer patients: a prospective study. Cancer Res Treat 43:231–235PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Dearnaley DP, Mason MD, Parmar MK, Sanders K, Sydes MR (2009) Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol 10:872–876PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Denham JW, Nowitz M, Joseph D, Duchesne G, Spry NA, Lamb DS, Matthews J, Turner S, Atkinson C, Tai KH, Gogna NK, Kenny L, Diamond T, Smart R, Rowan D, Moscato P, Vimieiro R, Woodfield R, Lynch K, Delahunt B, Murray J, D’Este C, McElduff P, Steigler A, Kautto A, Ball J (2014) Impact of androgen suppression and zoledronic acid on bone mineral density and fractures in the Trans-Tasman Radiation Oncology Group (TROG) 03.04 Randomised Androgen Deprivation and Radiotherapy (RADAR) randomized controlled trial for locally advanced prostate cancer. BJU Int 114:344–353PubMedGoogle Scholar
  48. 48.
    Wirth M, Tammela T, Cicalese V, Gomez Veiga F, Delaere K, Miller K, Tubaro A, Schulze M, Debruyne F, Huland H, Patel A, Lecouvet F, Caris C, Witjes W (2015) Prevention of bone metastases in patients with high-risk nonmetastatic prostate cancer treated with zoledronic acid: efficacy and Safety Results of the Zometa European Study (ZEUS). Eur Urol 67:482–491PubMedCrossRefGoogle Scholar
  49. 49.
    James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, Ritchie AWS, Parker CC, Russell JM, Attard G, de Bono J, Cross W, Jones RJ, Thalmann G, Amos C, Matheson D, Millman R, Alzouebi M, Beesley S, Birtle AJ, Brock S, Cathomas R, Chakraborti P, Chowdhury S, Cook A, Elliott T, Gale J, Gibbs S, Graham JD, Hetherington J, Hughes R, Laing R, McKinna F, McLaren DB, O’Sullivan JM, Parikh O, Peedell C, Protheroe A, Robinson AJ, Srihari N, Srinivasan R, Staffurth J, Sundar S, Tolan S, Tsang D, Wagstaff J, Parmar MKB (2016) Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387:1163–1177PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Reyes C, Hitz M, Prieto-Alhambra D, Abrahamsen B (2015) Risks and benefits of bisphosphonate therapies. J Cell Biochem 117:20–28CrossRefGoogle Scholar
  51. 51.
    Cole LE, Vargo-Gogola T, Roeder RK (2016) Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev 99:12–27PubMedCrossRefGoogle Scholar
  52. 52.
    Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696PubMedCrossRefGoogle Scholar
  53. 53.
    Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer M, Erwert R, Pinkas J, Branstetter D, Dougall WC (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468:103–107PubMedCrossRefGoogle Scholar
  54. 54.
    Leibbrandt A, Penninger JM (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci 1143:123–150PubMedCrossRefGoogle Scholar
  55. 55.
    Pfitzner BM, Branstetter D, Loibl S, Denkert C, Lederer B, Schmitt WD, Dombrowski F, Werner M, Rüdiger T, Dougall WC, Von Minckwitz G (2014) RANK expression as a prognostic and predictive marker in breast cancer. Breast Cancer Res Treat 145:307–315PubMedCrossRefGoogle Scholar
  56. 56.
    Kostenuik PJ, Smith SY, Jolette J, Schroeder J, Pyrah I, Ominsky MS (2011) Decreased bone remodeling and porosity are associated with improved bone strength in ovariectomized cynomolgus monkeys treated with denosumab, a fully human RANKL antibody. Bone 49:151–161PubMedCrossRefGoogle Scholar
  57. 57.
    Ominsky MS, Stouch B, Schroeder J, Pyrah I, Stolina M, Smith SY, Kostenuik PJ (2011) Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone 49:162–173PubMedCrossRefGoogle Scholar
  58. 58.
    Kostenuik PJ, Nguyen HQ, McCabe J, Warmington KS, Kurahara C, Sun N, Chen C, Li L, Cattley RC, Van G, Scully S, Elliott R, Grisanti M, Morony S, Tan HL, Asuncion F, Li X, Ominsky MS, Stolina M, Dwyer D, Dougall WC, Hawkins N, Boyle WJ, Simonet WS, Sullivan JK (2009) Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J Bone Miner Res 24:182–195PubMedCrossRefGoogle Scholar
  59. 59.
    Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han CY, Kostenuik P, Jurdic P, Ferrari S, Douni E (2014) Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res 29:1158–1169PubMedCrossRefGoogle Scholar
  60. 60.
    Canon J, Bryant R, Roudier M, Branstetter DG, Dougall WC (2012) RANKL inhibition combined with tamoxifen treatment increases anti-tumor efficacy and prevents tumor-induced bone destruction in an estrogen receptor-positive breast cancer bone metastasis model. Breast Cancer Res Treat 135:771–780PubMedCrossRefGoogle Scholar
  61. 61.
    Ottewell PD, Wang N, Brown HK, Fowles CA, Croucher PI, Eaton CL, Holen I (2015) OPG-Fc inhibits ovariectomy-induced growth of disseminated breast cancer cells in bone. Int J Cancer 137:968–977PubMedCrossRefGoogle Scholar
  62. 62.
    Canon JR, Bryant R, Roudier M, Dougall WC (2013) Abstract 3947: AMG 161, a fully human monoclonal antibody to human RANKL, inhibits tumor-induced osteoclastogenesis and reduces skeletal tumor burden in mice that express chimeric (murine/human) RANKL. Cancer Res 73:3947CrossRefGoogle Scholar
  63. 63.
    Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M, Holloway D, Peterson MC, Bekker PJ (2006) A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 12:1221–1228PubMedCrossRefGoogle Scholar
  64. 64.
    Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, Scagliotti GV, Sleeboom H, Spencer A, Vadhan-Raj S, Von Moos R, Willenbacher W, Woll PJ, Wang J, Jiang Q, Jun S, Dansey R, Yeh H (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29:1125–1132PubMedCrossRefGoogle Scholar
  65. 65.
    Raje N, Vadhan-Raj S, Willenbacher W, Terpos E, Hungria V, Spencer A, Alexeeva Y, Facon T, Stewart AK, Feng A, Braun A, Balakumaran A, Roodman GD (2016) Evaluating results from the multiple myeloma patient subset treated with denosumab or zoledronic acid in a randomized phase 3 trial. Blood Cancer J 6:e378PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lipton A, Steger GG, Figueroa J, Alvarado C, Solal-Celigny P, Body JJ, de Boer R, Berardi R, Gascon P, Tonkin KS, Coleman RE, Paterson AHG, Gao GM, Kinsey AC, Peterson MC, Jun S (2008) Extended efficacy and safety of denosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin Cancer Res 14:6690–6696PubMedCrossRefGoogle Scholar
  67. 67.
    Stopeck AT, Lipton A, Body J-, Steger GG, Tonkin K, De Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139PubMedCrossRefGoogle Scholar
  68. 68.
    Stopeck AT, Fizazi K, Body J-, Brown JE, Carducci M, Diel I, Fujiwara Y, Martín M, Paterson A, Tonkin K, Shore N, Sieber P, Kueppers F, Karsh L, Yardley D, Wang H, Maniar T, Arellano J, Braun A (2016) Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer. Support Care Cancer 24:447–455PubMedCrossRefGoogle Scholar
  69. 69.
    Lipton A, Fizazi K, Stopeck AT, Henry DH, Smith MR, Shore N, Martin M, Vadhan-Raj S, Brown JE, Richardson GE, Saad F, Yardley DA, Zhou K, Balakumaran A, Braun A (2016) Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. Eur J Cancer 53:75–83PubMedCrossRefGoogle Scholar
  70. 70.
    Fizazi K, Lipton A, Mariette X, Body J, Rahim Y, Gralow JR, Gao G, Wu L, Sohn W, Jun S (2009) Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 27:1564–1571PubMedCrossRefGoogle Scholar
  71. 71.
    Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–822PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B, Miller K, Sieber P, Karsh L, Damião R, Tammela TL, Egerdie B, Van Poppel H, Chin J, Morote J, Gómez-Veiga F, Borkowski T, Ye Z, Kupic A, Dansey R, Goessl C (2012) Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379:39–46PubMedCrossRefGoogle Scholar
  73. 73.
    Smith MR, Halabi S, Ryan CJ, Hussain A, Vogelzang N, Stadler W, Hauke RJ, Monk JP, Saylor P, Bhoopalam N, Saad F, Sanford B, Kelly WK, Morris M, Small EJ (2014) Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: results of CALGB 90202 (Alliance). J Clin Oncol 32:1143–1150PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Diel IJ, Body J-, Stopeck AT, Vadhan-Raj S, Spencer A, Steger G, von Moos R, Goldwasser F, Feng A, Braun A (2015) The role of denosumab in the prevention of hypercalcaemia of malignancy in cancer patients with metastatic bone disease. Eur J Cancer 51:1467–1475PubMedCrossRefGoogle Scholar
  75. 75.
    Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, Fan M, Jun S (2008) Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 26:4875–4882PubMedCrossRefGoogle Scholar
  76. 76.
    Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Fan M, Kim D (2009) Effect of denosumab on bone mineral density in women receiving adjuvant aromatase inhibitors for non-metastatic breast cancer: subgroup analyses of a phase 3 study. Breast Cancer Res Treat 118:81–87PubMedCrossRefGoogle Scholar
  77. 77.
    Gnant M, Pfeiler G, Dubsky PC, Hubalek M, Greil R, Jakesz R, Wette V, Balic M, Haslbauer F, Melbinger E, Bjelic-Radisic V, Artner-Matuschek S, Fitzal F, Marth C, Sevelda P, Mlineritsch B, Steger GG, Manfreda D, Exner R, Egle D, Bergh J, Kainberger F, Talbot S, Warner D, Fesl C, Singer CF (2015) Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386:433–443PubMedCrossRefGoogle Scholar
  78. 78.
    Smith MR, Egerdie B, Toriz NH, Feldman R, Tammela TLJ, Saad F, Heracek J, Szwedowski M, Ke C, Kupic A, Leder BZ, Goessl C (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361:745–755PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Palafox M, Ferrer I, Pellegrini P, Vila S, Hernandez-Ortega S, Urruticoechea A, Climent F, Soler MT, Munoz P, Vinals F, Tometsko M, Branstetter D, Dougall WC, Gonzalez-Suarez E (2012) RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res 72:2879–2888PubMedCrossRefGoogle Scholar
  80. 80.
    Sigl V, Owusu-Boaitey K, Joshi PA, Kavirayani A, Wirnsberger G, Novatchkova M, Kozieradzki I, Schramek D, Edokobi N, Hersl J, Sampson A, Odai-Afotey A, Lazaro C, Gonzalez-Suarez E, Pujana MA, Cimba F, Heyn H, Vidal E, Cruickshank J, Berman H, Sarao R, Ticevic M, Uribesalgo I, Tortola L, Rao S, Tan Y, Pfeiler G, Lee EYHP, Bago-Horvath Z, Kenner L, Popper H, Singer C, Khokha R, Jones LP, Penninger JM (2016) RANKL/RANK control Brca1 mutation-driven mammary tumors. Cell Res 26:761–774PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ford JA, Jones R, Elders A, Mulatero C, Royle P, Sharma P, Stewart F, Todd R, Mowatt G (2013) Denosumab for treatment of bone metastases secondary to solid tumours: systematic review and network meta-analysis. Eur J Cancer 49:416–430PubMedCrossRefGoogle Scholar
  82. 82.
    Easton JB, Houghton PJ (2006) mTOR and cancer therapy. Oncogene 25:6436–6446PubMedCrossRefGoogle Scholar
  83. 83.
    Bertoldo F, Silvestris F, Ibrahim T, Cognetti F, Generali D, Ripamonti CI, Amadori D, Colleoni MA, Conte P, Del Mastro L, De Placido S, Ortega C, Santini D (2014) Targeting bone metastatic cancer: role of the mTOR pathway. Biochim Biophys Acta 1845:248–254PubMedGoogle Scholar
  84. 84.
    Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA (2003) M-CSF, TNF alpha and RANK ligand promote osteoclast survival by signaling through mTOR//S6 kinase. Cell Death Differ 10:1165–1177PubMedCrossRefGoogle Scholar
  85. 85.
    Kneissel M, Luong-Nguyen N, Baptist M, Cortesi R, Zumstein-Mecker S, Kossida S, O’Reilly T, Lane H, Susa M (2004) Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone 35:1144–1156PubMedCrossRefGoogle Scholar
  86. 86.
    Mogi M, Kondo A (2009) Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells. Biochem Biophys Res Commun 384:82–86PubMedCrossRefGoogle Scholar
  87. 87.
    Lee KW, Yook JY, Son MY, Kim MJ, Koo DB, Han YM, Cho YS (2010) Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev 19:557–568PubMedCrossRefGoogle Scholar
  88. 88.
    Hussein O, Tiedemann K, Murshed M, Komarova SV (2012) Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases. Cancer Lett 314:176–184PubMedCrossRefGoogle Scholar
  89. 89.
    Moriceau G, Ory B, Mitrofan L, Riganti C, Blanchard F, Brion R, Charrier C, Battaglia S, Pilet P, Denis MG, Shultz LD, Mönkkönen J, Rédini F, Heymann D (2010) Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (everolimus): pivotal role of the prenylation process. Cancer Res 70:10329–10339PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Morgan TM, Pitts TE, Gross TS, Poliachik SL, Vessella RL, Corey E (2008) RAD001 (Everolimus) inhibits growth of prostate cancer in the bone and the inhibitory effects are increased by combination with docetaxel and zoledronic acid. Prostate 68:861–871PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Okui T, Shimo T, Fukazawa T, Kurio N, Hassan NM, Honami T, Takaoka M, Naomoto Y, Sasaki A (2010) Antitumor effect of temsirolimus against oral squamous cell carcinoma associated with bone destruction. Mol Cancer Ther 9:2960–2969PubMedCrossRefGoogle Scholar
  92. 92.
    Hurvitz SA, Andre F, Jiang Z, Shao Z, Mano MS, Neciosup SP, Tseng L, Zhang Q, Shen K, Liu D, Dreosti LM, Burris HA, Toi M, Buyse ME, Cabaribere D, Lindsay M, Rao S, Pacaud LB, Taran T, Slamon D (2015) Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. Lancet Oncol 16:816–829PubMedCrossRefGoogle Scholar
  93. 93.
    Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, Mukhopadhyay P, Lebwohl D, Hortobagyi GN (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529PubMedCrossRefGoogle Scholar
  94. 94.
    Yardley DA, Noguchi S, Pritchard KI, Burris HA 3rd, Baselga J, Gnant M, Hortobagyi GN, Campone M, Pistilli B, Piccart M, Melichar B, Petrakova K, Arena FP, Erdkamp F, Harb WA, Feng W, Cahana A, Taran T, Lebwohl D, Rugo HS (2013) Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther 30:870–884PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hortobagyi GN (2015) Everolimus plus exemestane for the treatment of advanced breast cancer: a review of subanalyses from BOLERO-2. Neoplasia 17:279–288PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Maass N, Harbeck N, Mundhenke C, Lerchenmüller C, Barinoff J, Lück H, Ettl J, Aktas B, Kümmel S, Rösel S, Wagner S, Müller L, Bischoff J, Lübbe K, Schwedler K, Schmidt M, Bauerschlag D, Nekljudova V, von Minckwitz G, Loibl S (2013) Everolimus as treatment for breast cancer patients with bone metastases only: results of the phase II RADAR study. J Cancer Res Clin Oncol 139:2047–2056PubMedCrossRefGoogle Scholar
  97. 97.
    Amato RJ, Flaherty A, Zhang Y, Ouyang F, Mohlere V (2014) Clinical prognostic factors associated with outcome in patients with renal cell cancer with prior tyrosine kinase inhibitors or immunotherapy treated with everolimus. Urol Oncol 32:345–354PubMedCrossRefGoogle Scholar
  98. 98.
    Broom RJ, Hinder V, Sharples K, Proctor J, Duffey S, Pollard S, Fong PCC, Forgeson G, Harris DL, Jameson MB, O’Donnell A, North RT, Deva S, Hanning FJ, Grey A, Findlay MPN (2015) Everolimus and zoledronic acid in patients with renal cell carcinoma With bone metastases: a randomized first-line phase II trial. Clin Genitourin Cancer 13:50–58PubMedCrossRefGoogle Scholar
  99. 99.
    Yu Y, Song Z, Yang S, Yang X, Zhang J, Lu S (2014) Everolimus and zoledronic acid—a potential synergistic treatment for lung adenocarcinoma bone metastasis. Acta Biochim Biophys Sin (Shanghai) 46:792–801CrossRefGoogle Scholar
  100. 100.
    Vaishampayan U, Shevrin D, Stein M, Heilbrun L, Land S, Stark K, Li J, Dickow B, Heath E, Smith D, Fontana J (2015) Phase II trial of carboplatin, everolimus, and prednisone in metastatic castration-resistant prostate cancer pretreated with docetaxel chemotherapy: a prostate cancer clinical trial consortium study. Urology 86:1206–1211PubMedCrossRefGoogle Scholar
  101. 101.
    Günther A, Baumann P, Burger R, Kellner C, Klapper W, Schmidmaier R, Gramatzki M (2015) Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: a phase I study. Haematologica 100:541–547PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Yee AJ, Hari P, Marcheselli R, Mahindra AK, Mahindra AK, Cirstea DD, Scullen TA, Burke JN, Rodig SJ, Hideshima T, Laubach JP, Ghobrial IM, Schlossman RL, Munshi NC, Anderson KC, Weller EA, Richardson PG, Raje NS (2014) Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br J Haematol 166:401–409PubMedCrossRefGoogle Scholar
  103. 103.
    Rugo HS, Pritchard KI, Gnant M, Noguchi S, Piccart M, Hortobagyi G, Baselga J, Perez A, Geberth M, Csoszi T, Chouinard E, Srimuninnimit V, Puttawibul P, Eakle J, Feng W, Bauly H, El-Hashimy M, Taran T, Burris HA III (2014) Incidence and time course of everolimus-related adverse events in postmenopausal women with hormone receptor-positive advanced breast cancer: insights from BOLERO-2. Ann Oncol 25:808–815PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Turner PG, O’Sullivan JM (2015) (223)Ra and other bone-targeting radiopharmaceuticals-the translation of radiation biology into clinical practice. Br J Radiol 88:20140752PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Coleman R (2016) Treatment of metastatic bone disease and the emerging role of radium-223. Semin Nucl Med 46:99–104PubMedCrossRefGoogle Scholar
  106. 106.
    Henriksen G, Fisher DR, Roeske JC, Bruland OS, Larsen RH (2003) Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med 44:252–259PubMedGoogle Scholar
  107. 107.
    Abou DS, Ulmert D, Doucet M, Hobbs RF, Riddle RC, Thorek DLJ (2015) Whole-body and microenvironmental localization of radium-223 in naive and mouse models of prostate cancer metastasis. J Natl Cancer Inst. doi: 10.1093/jnci/djv380 PubMedPubMedCentralGoogle Scholar
  108. 108.
    Henriksen G, Breistol K, Bruland OS, Fodstad O, Larsen RH (2002) Significant antitumor effect from bone-seeking, alpha-particle-emitting (223)Ra demonstrated in an experimental skeletal metastases model. Cancer Res 62:3120–3125PubMedGoogle Scholar
  109. 109.
    Nilsson S, Franzén L, Parker C, Tyrrell C, Blom R, Tennvall J, Lennernäs B, Petersson U, Johannessen DC, Sokal M, Pigott K, Yachnin J, Garkavij M, Strang P, Harmenberg J, Bolstad B, Bruland ØS (2007) Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol 8:587–594PubMedCrossRefGoogle Scholar
  110. 110.
    Sartor O, Coleman R, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Widmark A, Johannessen DC, Hoskin P, James ND, Solberg A, Syndikus I, Vogelzang NJ, O’Bryan-Tear CG, Shan M, Bruland ØS, Parker C (2014) Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol 15:738–746PubMedCrossRefGoogle Scholar
  111. 111.
    Suominen MI, Rissanen JP, Kakonen R, Fagerlund KM, Alhoniemi E, Mumberg D, Ziegelbauer K, Halleen JM, Kakonen SM, Scholz A (2013) Survival benefit with radium-223 dichloride in a mouse model of breast cancer bone metastasis. J Natl Cancer Inst 105:908–916PubMedCrossRefGoogle Scholar
  112. 112.
    Takalkar A, Adams S, Subbiah V (2014) Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone. Exp Hematol Oncol. doi: 10.1186/2162-3619-3-23 PubMedPubMedCentralGoogle Scholar
  113. 113.
    Coleman R, Aksnes A, Naume B, Garcia C, Jerusalem G, Piccart M, Vobecky N, Thuresson M, Flamen P (2014) A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease. Breast Cancer Res Treat 145:411–418PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Accardi F, Toscani D, Bolzoni M, Dalla Palma B, Aversa F, Giuliani N (2015) Mechanism of action of bortezomib and the new proteasome inhibitors on myeloma cells and the bone microenvironment: impact on myeloma-induced alterations of bone remodeling. Biomed Res Int 2015:172458PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Niewerth D, Jansen G, Assaraf YG, Zweegman S, Kaspers GJ, Cloos J (2015) Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist Updat 18:18–35PubMedCrossRefGoogle Scholar
  116. 116.
    Scott K, Hayden PJ, Will A, Wheatley K, Coyne I (2016) Bortezomib for the treatment of multiple myeloma. Cochrane Database Syst Rev 4:CD010816PubMedGoogle Scholar
  117. 117.
    Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Borjesson AE, Ohlsson C (2014) Sex steroid actions in male bone. Endocr Rev 35:906–960PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Haidar S, Ehmer PB, Barassin S, Batzl-Hartmann C, Hartmann RW (2003) Effects of novel 17alpha-hydroxylase/C17, 20-lyase (P450 17, CYP 17) inhibitors on androgen biosynthesis in vitro and in vivo. J Steroid Biochem Mol Biol 84:555–562PubMedCrossRefGoogle Scholar
  119. 119.
    Wu J, Moverare-Skrtic S, Borjesson AE, Lagerquist MK, Sjogren K, Windahl SH, Koskela A, Grahnemo L, Islander U, Wilhelmson AS, Tivesten A, Tuukkanen J, Ohlsson C (2016) Enzalutamide reduces the bone mass in the axial but not the appendicular skeleton in male mice. Endocrinology 157:969–977PubMedCrossRefGoogle Scholar
  120. 120.
    Iuliani M, Pantano F, Buttigliero C, Fioramonti M, Bertaglia V, Vincenzi B, Zoccoli A, Ribelli G, Tucci M, Vignani F, Berruti A, Scagliotti GV, Tonini G, Santini D (2015) Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment. Oncotarget 6:12520–12528PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, Staffurth JN, North S, Vogelzang NJ, Saad F, Mainwaring P, Harland S, Goodman OB Jr, Sternberg CN, Li JH, Kheoh T, Haqq CM, de Bono JS, COU-AA-301 Investigators (2012) Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 13:983–992PubMedCrossRefGoogle Scholar
  122. 122.
    McCrea E, Sissung TM, Price DK, Chau CH, Figg WD (2016) Androgen receptor variation affects prostate cancer progression and drug resistance. Pharmacol Res 114:152–162PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Littlewood-Evans AJ, Bilbe G, Bowler WB, Farley D, Wlodarski B, Kokubo T, Inaoka T, Sloane J, Evans DB, Gallagher JA (1997) The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res 57:5386–5390PubMedGoogle Scholar
  124. 124.
    Le Gall C, Bellahcène A, Bonnelye E, Gasser JA, Castronovo V, Green J, Zimmermann J, Clézardin P (2007) A cathepsin K inhibitor reduces breast cancer-induced osteolysis and skeletal tumor burden. Cancer Res 67:9894–9902PubMedCrossRefGoogle Scholar
  125. 125.
    Brubaker KD, Vessella RL, True LD, Thomas R, Corey E (2003) Cathepsin K mRNA and protein expression in prostate cancer progression. J Bone Miner Res 18:222–230PubMedCrossRefGoogle Scholar
  126. 126.
    Husmann K, Muff R, Bolander ME, Sarkar G, Born W, Fuchs B (2008) Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog 47:66–73PubMedCrossRefGoogle Scholar
  127. 127.
    Podgorski I (2009) Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem 1:21PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Jensen AB, Wynne C, Ramirez G, He W, Song Y, Berd Y, Wang H, Mehta A, Lombardi A (2010) The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: results of a 4-week, double-blind, randomized, controlled trial. Clin Breast Cancer 10:452–458PubMedCrossRefGoogle Scholar
  129. 129.
    Duong LT, Wesolowski GA, Leung P, Oballa R, Pickarski M (2014) Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol Cancer Ther 13:2898–2909PubMedCrossRefGoogle Scholar
  130. 130.
    Langdahl B, Binkley N, Bone H, Gilchrist N, Resch H, Rodriguez Portales J, Denker A, Lombardi A, Le Bailly DeTilleghem C, DaSilva C, Rosenberg E, Leung A (2012) Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J Bone Miner Res 27:2251–2258PubMedCrossRefGoogle Scholar
  131. 131.
    Bone HG, Dempster DW, Eisman JA, Greenspan SL, McClung MR, Nakamura T, Papapoulos S, Shih WJ, Rybak-Feiglin A, Santora AC, Verbruggen N, Leung AT, Lombardi A (2015) Odanacatib for the treatment of postmenopausal osteoporosis: development history and design and participant characteristics of LOFT, the Long-Term Odanacatib Fracture Trial. Osteoporos Int 26:699–712PubMedCrossRefGoogle Scholar
  132. 132.
    Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702PubMedCrossRefGoogle Scholar
  133. 133.
    Horne WC, Sanjay A, Bruzzaniti A, Baron R (2005) The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 208:106–125PubMedCrossRefGoogle Scholar
  134. 134.
    Lee YC, Huang CF, Murshed M, Chu K, Araujo JC, Ye X, deCrombrugghe B, Yu-Lee LY, Gallick GE, Lin SH (2010) Src family kinase/abl inhibitor dasatinib suppresses proliferation and enhances differentiation of osteoblasts. Oncogene 29:3196–3207PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Roskoski R Jr (2015) Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res 94:9–25PubMedCrossRefGoogle Scholar
  136. 136.
    Rucci N, Recchia I, Angelucci A, Alamanou M, Del Fattore A, Fortunati D, Susa M, Fabbro D, Bologna M, Teti A (2006) Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: implications for therapy. J Pharmacol Exp Ther 318:161–172PubMedCrossRefGoogle Scholar
  137. 137.
    De Felice M, Lambert D, Holen I, Escott KJ, Andrew D (2016) Effects of Src-kinase inhibition in cancer-induced bone pain. Mol Pain. doi: 10.1177/1744806916643725 PubMedPubMedCentralGoogle Scholar
  138. 138.
    Campone M, Bondarenko I, Brincat S, Hotko Y, Munster PN, Chmielowska E, Fumoleau P, Ward R, Bardy-Bouxin N, Leip E, Turnbull K, Zacharchuk C, Epstein RJ (2012) Phase II study of single-agent bosutinib, a Src/Abl tyrosine kinase inhibitor, in patients with locally advanced or metastatic breast cancer pretreated with chemotherapy. Ann Oncol 23:610–617PubMedCrossRefGoogle Scholar
  139. 139.
    Yu EY, Massard C, Gross ME, Carducci MA, Culine S, Hudes G, Posadas EM, Sternberg CN, Wilding G, Trudel GC, Paliwal P, Fizazi K (2011) Once-daily dasatinib: expansion of phase II study evaluating safety and efficacy of dasatinib in patients with metastatic castration-resistant prostate cancer. Urology 77:1166–1171PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Yu EY, Duan F, Muzi M, Deng X, Chin BB, Alumkal JJ, Taplin ME, Taub JM, Herman B, Higano CS, Doot RK, Hartfeil D, Febbo PG, Mankoff DA (2015) Castration-resistant prostate cancer bone metastasis response measured by 18F-fluoride PET after treatment with dasatinib and correlation with progression-free survival: results from American College of Radiology Imaging Network 6687. J Nucl Med 56:354–360PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Mitri Z, Nanda R, Blackwell K, Costelloe CM, Hood I, Wei C, Brewster AM, Ibrahim NK, Koenig KB, Hortobagyi GN, Van Poznak C, Rimawi MF, Moulder-Thompson S, Translational Breast Cancer Research Consortium (2016) TBCRC-010: phase I/II study of dasatinib in combination with zoledronic acid for the treatment of breast cancer bone metastasis. Clin Cancer Res 22:5706–5712PubMedCrossRefGoogle Scholar
  142. 142.
    Rabbani SA, Valentino ML, Arakelian A, Ali S, Boschelli F (2010) SKI-606 (Bosutinib) blocks prostate cancer invasion, growth, and metastasis in vitro and in vivo through regulation of genes involved in cancer growth and skeletal metastasis. Mol Cancer Ther 9:1147–1157PubMedCrossRefGoogle Scholar
  143. 143.
    Yang JC, Bai L, Yap S, Gao AC, Kung HJ, Evans CP (2010) Effect of the specific Src family kinase inhibitor saracatinib on osteolytic lesions using the PC-3 bone model. Mol Cancer Ther 9:1629–1637PubMedCrossRefGoogle Scholar
  144. 144.
    Antonarakis ES, Heath EI, Posadas EM, Yu EY, Harrison MR, Bruce JY, Cho SY, Wilding GE, Fetterly GJ, Hangauer DG, Kwan MF, Dyster LM, Carducci MA (2013) A phase 2 study of KX2-391, an oral inhibitor of Src kinase and tubulin polymerization, in men with bone-metastatic castration-resistant prostate cancer. Cancer Chemother Pharmacol 71:883–892PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192PubMedCrossRefGoogle Scholar
  146. 146.
    Colucci S, Brunetti G, Oranger A, Mori G, Sardone F, Specchia G, Rinaldi E, Curci P, Liso V, Passeri G, Zallone A, Rizzi R, Grano M (2011) Myeloma cells suppress osteoblasts through sclerostin secretion. Blood Cancer J 1:e27PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Mendoza-Villanueva D, Zeef L, Shore P (2011) Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFbeta-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res 13:R106PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Kyvernitakis I, Rachner TD, Urbschat A, Hars O, Hofbauer LC, Hadji P (2014) Effect of aromatase inhibition on serum levels of sclerostin and dickkopf-1, bone turnover markers and bone mineral density in women with breast cancer. J Cancer Res Clin Oncol 140:1671–1680PubMedCrossRefGoogle Scholar
  149. 149.
    Terpos E, Christoulas D, Katodritou E, Bratengeier C, Gkotzamanidou M, Michalis E, Delimpasi S, Pouli A, Meletis J, Kastritis E, Zervas K, Dimopoulos MA (2012) Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-bortezomib monotherapy. Int J Cancer 131:1466–1471PubMedCrossRefGoogle Scholar
  150. 150.
    Eda H, Santo L, Wein MN, Hu DZ, Cirstea DD, Nemani N, Tai YT, Raines SE, Kuhstoss SA, Munshi NC, Kronenberg HM, Raje NS (2016) Regulation of sclerostin expression in multiple myeloma by Dkk-1; a potential therapeutic strategy for myeloma bone disease. J Bone Miner Res 31:1225–1234PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Garcia-Fontana B, Morales-Santana S, Varsavsky M, Garcia-Martin A, Garcia-Salcedo JA, Reyes-Garcia R, Munoz-Torres M (2014) Sclerostin serum levels in prostate cancer patients and their relationship with sex steroids. Osteoporos Int 25:645–651PubMedCrossRefGoogle Scholar
  152. 152.
    Yavropoulou MP, van Lierop AH, Hamdy NAT, Rizzoli R, Papapoulos SE (2012) Serum sclerostin levels in Paget’s disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone 51:153–157PubMedCrossRefGoogle Scholar
  153. 153.
    Larson SR, Zhang X, Dumpit R, Coleman I, Lakely B, Roudier M, Higano CS, True LD, Lange PH, Montgomery B, Corey E, Nelson PS, Vessella RL, Morrissey C (2013) Characterization of osteoblastic and osteolytic proteins in prostate cancer bone metastases. Prostate 73:932–940PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Hudson BD, Hum NR, Thomas CB, Kohlgruber A, Sebastian A, Collette NM, Coleman MA, Christiansen BA, Loots GG (2015) SOST inhibits prostate cancer invasion. PLoS ONE 10:e0142058PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Jiang Y, Dai J, Zhang H, Sottnik JL, Keller JM, Escott KJ, Sanganee HJ, Yao Z, McCauley LK, Keller ET (2013) Activation of the wnt pathway through AR79, a GSK3ß inhibitor, promotes prostate cancer growth in soft tissue and bone. Mol Cancer Res 11:1597–1610PubMedCrossRefGoogle Scholar
  156. 156.
    Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, Muzylak M, Greenslade K, Moore A, Zhang L, Gong J, Qian X, Paszty C, Taylor RJ, Robinson MK, Carr MD (2009) Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem 284:10890–10900PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Nioi P, Taylor S, Hu R, Pacheco E, He YD, Hamadeh H, Paszty C, Pyrah I, Ominsky MS, Boyce RW (2015) Transcriptional profiling of laser capture microdissected subpopulations of the osteoblast lineage provides insight into the early response to sclerostin antibody in rats. J Bone Miner Res 30:1457–1467PubMedCrossRefGoogle Scholar
  158. 158.
    Taylor S, Ominsky MS, Hu R, Pacheco E, He YD, Brown DL, Aguirre JI, Wronski TJ, Buntich S, Afshari CA, Pyrah I, Nioi P, Boyce RW (2016) Time-dependent cellular and transcriptional changes in the osteoblast lineage associated with sclerostin antibody treatment in ovariectomized rats. Bone 84:148–159PubMedCrossRefGoogle Scholar
  159. 159.
    Reagan MR, McDonald M, Terry R, Pettitt J, Le L, Mohanty S, Kneissel M, Kramer I, Brooks D, Bouxsein M, Rosen CJ, Ghobrial IM, Croucher P (2015) Anti-sclerostin treatment prevents multiple myeloma induced bone loss and reduces tumor burden. Blood 126:119Google Scholar
  160. 160.
    McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, Langdahl BL, Reginster J-, Zanchetta JR, Wasserman SM, Katz L, Maddox J, Yang Y-, Libanati C, Bone HG (2014) Romosozumab in postmenopausal women with low bone mineral density. New Engl J Med 370:412–420PubMedCrossRefGoogle Scholar
  161. 161.
    Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, Chiang AY, Hu L, Krege JH, Sowa H, Mitlak BH, Myers SL (2015) A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res 30:216–224PubMedCrossRefGoogle Scholar
  162. 162.
    Lewiecki EM (2014) Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther Adv Musculoskelet Dis 6:48–57PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Voorzanger-Rousselot N, Goehrig D, Journe F, Doriath V, Body JJ, Clezardin P, Garnero P (2007) Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 97:964–970PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD, Evans HR, Snowden JA, Stover DR, Vanderkerken K, Croucher PI (2009) Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res 24:425–436PubMedCrossRefGoogle Scholar
  165. 165.
    Rachner TD, Gobel A, Benad-Mehner P, Hofbauer LC, Rauner M (2014) Dickkopf-1 as a mediator and novel target in malignant bone disease. Cancer Lett 346:172–177PubMedCrossRefGoogle Scholar
  166. 166.
    Goldstein SD, Trucco M, Bautista Guzman W, Hayashi M, Loeb DM (2016) A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget 7:21114–21123PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Iyer SP, Beck JT, Stewart AK, Shah J, Kelly KR, Isaacs R, Bilic S, Sen S, Munshi NC (2014) A phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol 167:366–375PubMedCrossRefGoogle Scholar
  168. 168.
    Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B, Salimi-Moosavi H, Asuncion FJ, Li C, Sun B, Tan HL, Zhang L, Han CY, Case R, Duguay AN, Grisanti M, Stevens J, Pretorius JK, Pacheco E, Jones H, Chen Q, Soriano BD, Wen J, Heron B, Jacobsen FW, Brisan E, Richards WG, Ke HZ, Ominsky MS (2016) A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun 7:11505PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Kitagawa Y, Dai J, Zhang J, Keller JM, Nor J, Yao Z, Keller ET (2005) Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res 65:10921–10929PubMedCrossRefGoogle Scholar
  171. 171.
    Nakashiro K, Hayashi Y, Oyasu R (2003) Immunohistochemical expression of hepatocyte growth factor and c-Met/HGF receptor in benign and malignant human prostate tissue. Oncol Rep 10:1149–1153PubMedGoogle Scholar
  172. 172.
    Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, Orf J, You A, Laird AD, Engst S, Lee L, Lesch J, Chou YC, Joly AH (2011) Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 10:2298–2308PubMedCrossRefGoogle Scholar
  173. 173.
    Nguyen HM, Ruppender N, Zhang X, Brown LG, Gross TS, Morrissey C, Gulati R, Vessella RL, Schimmoller F, Aftab DT, Corey E (2013) Cabozantinib inhibits growth of androgen-sensitive and castration-resistant prostate cancer and affects bone remodeling. PLoS ONE 8:e78881PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Dai J, Zhang H, Karatsinides A, Keller JM, Kozloff KM, Aftab DT, Schimmoller F, Keller ET (2014) Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions. Clin Cancer Res 20:617–630PubMedCrossRefGoogle Scholar
  175. 175.
    Varkaris A, Corn PG, Parikh NU, Efstathiou E, Song JH, Lee Y, Aparicio A, Hoang AG, Gaur S, Thorpe L, Maity SN, Bar Eli M, Czerniak BA, Shao Y, Alauddin M, Lin S, Logothetis CJ, Gallick GE (2016) Integrating murine and clinical trials with cabozantinib to understand roles of MET and VEGFR2 as targets for growth inhibition of prostate cancer. Clin Cancer Res 22:107PubMedCrossRefGoogle Scholar
  176. 176.
    Watanabe K, Hirata M, Tominari T, Matsumoto C, Fujita H, Yonekura K, Murphy G, Nagase H, Miyaura C, Inada M (2016) The MET/vascular endothelial growth factor receptor (VEGFR)-targeted tyrosine kinase inhibitor also attenuates FMS-dependent osteoclast differentiation and bone destruction induced by prostate cancer. J Biol Chem 291:20891–20899PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Fujita H, Gomori A, Fujioka Y, Kataoka Y, Tanaka K, Hashimoto A, Suzuki T, Ito K, Haruma T, Yamamoto-Yokoi H, Harada N, Sakuragi M, Oda N, Matsuo K, Inada M, Yonekura K (2016) High potency VEGFRs/MET/FMS triple blockade by TAS-115 concomitantly suppresses tumor progression and bone destruction in tumor-induced bone disease model with lung carcinoma cells. PLoS ONE 11:e0164830PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Smith M, De Bono J, Sternberg C, Le Moulec S, Oudard S, De Giorgi U, Krainer M, Bergman A, Hoelzer W, De Wit R, Bogemann M, Saad F, Cruciani G, Thiery-Vuillemin A, Feyerabend S, Miller K, Houede N, Hussain S, Lam E, Polikoff J, Stenzl A, Mainwaring P, Ramies D, Hessel C, Weitzman A, Fizazi K (2016) Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol 34:3005–3013PubMedCrossRefGoogle Scholar
  179. 179.
    Doran MG, Spratt DE, Wongvipat J, Ulmert D, Carver BS, Sawyers CL, Evans MJ (2014) Cabozantinib resolves bone scans in tumor-naive mice harboring skeletal injuries. Mol Imaging. doi: 10.2310/7290.2014.00026 PubMedCentralGoogle Scholar
  180. 180.
    Graham TJ, Box G, Tunariu N, Crespo M, Spinks TJ, Miranda S, Attard G, de Bono J, Eccles SA, Davies FE, Robinson SP (2014) Preclinical evaluation of imaging biomarkers for prostate cancer bone metastasis and response to cabozantinib. J Natl Cancer Inst. doi: 10.1093/jnci/dju033 PubMedCentralGoogle Scholar
  181. 181.
    Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Stucci S, Tucci M, Passarelli A, Silvestris F (2015) Avβ3 integrin: pathogenetic role in osteotropic tumors. Crit Rev Oncol Hematol 96:183–193PubMedCrossRefGoogle Scholar
  183. 183.
    Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M (1989) The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol 109:1817–1826PubMedCrossRefGoogle Scholar
  184. 184.
    Zhao Y, Bachelier R, Treilleux I, Pujuguet P, Peyruchaud O, Baron R, Clement-Lacroix P, Clezardin P (2007) Tumor Avβ3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 67:5821–5830PubMedCrossRefGoogle Scholar
  185. 185.
    Carter RZ, Micocci KC, Natoli A, Redvers RP, Paquet-Fifield S, Martin AC, Denoyer D, Ling X, Kim SH, Tomasin R, Selistre-de-Araujo H, Anderson RL, Pouliot N (2015) Tumour but not stromal expression of β3 integrin is essential, and is required early, for spontaneous dissemination of bone-metastatic breast cancer. J Pathol 235:760–772PubMedCrossRefGoogle Scholar
  186. 186.
    Gvozdenovic A, Boro A, Meier D, Bode-Lesniewska B, Born W, Muff R, Fuchs B (2016) Targeting αvβ3 and alphavbeta5 integrins inhibits pulmonary metastasis in an intratibial xenograft osteosarcoma mouse model. Oncotarget 7:55141–55154PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Yao H, Veine DM, Livant DL (2016) Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin. Breast Cancer Res Treat 157:489–501PubMedCrossRefGoogle Scholar
  188. 188.
    Rucci N, Capulli M, Olstad OK, Önnerfjord P, Tillgren V, Gautvik KM, Heinegård D, Teti A (2015) The α2β1 binding domain of chondroadherin inhibits breast cancer-induced bone metastases and impairs primary tumour growth: a preclinical study. Cancer Lett 358:67–75PubMedCrossRefGoogle Scholar
  189. 189.
    Gramoun A, Shorey S, Bashutski JD, Dixon SJ, Sims SM, Heersche JN, Manolson MF (2007) Effects of Vitaxin, a novel therapeutic in trial for metastatic bone tumors, on osteoclast functions in vitro. J Cell Biochem 102:341–352PubMedCrossRefGoogle Scholar
  190. 190.
    Bradley DA, Daignault S, Ryan CJ, Dipaola RS, Cooney KA, Smith DC, Small E, Mathew P, Gross ME, Stein MN, Chen A, Pienta KJ, Escara-Wilke J, Doyle G, Al-Hawary M, Keller ET, Hussain M (2011) Cilengitide (EMD 121974, NSC 707544) in asymptomatic metastatic castration resistant prostate cancer patients: a randomized phase II trial by the prostate cancer clinical trials consortium. Invest New Drugs 29:1432–1440PubMedCrossRefGoogle Scholar
  191. 191.
    Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, McParland B, Cohen PS, Hui AM, Palmieri C, Osman S, Glaser M, Turton D, Al-Nahhas A, Aboagye EO (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 49:879–886PubMedCrossRefGoogle Scholar
  192. 192.
    Zhang J, Niu G, Lang L, Li F, Fan X, Yan X, Yao S, Yan W, Huo L, Chen L, Li Z, Zhu Z, Chen X (2017) Clinical translation of a dual integrin αvβ3- and gastrin-releasing peptide receptor-targeting pet radiotracer, 68 Ga-BBN-RGD. J Nucl Med 58:228–234PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Gaddy-Kurten D, Coker JK, Abe E, Jilka RL, Manolagas SC (2002) Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures. Endocrinology 143:74–83PubMedCrossRefGoogle Scholar
  194. 194.
    Chantry AD, Heath D, Mulivor AW, Pearsall S, Baud’huin M, Coulton L, Evans H, Abdul N, Werner ED, Bouxsein ML, Key ML, Seehra J, Arnett TR, Vanderkerken K, Croucher P (2010) Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J Bone Miner Res 25:2633–2646PubMedCrossRefGoogle Scholar
  195. 195.
    Kang HY, Huang HY, Hsieh CY, Li CF, Shyr CR, Tsai MY, Chang C, Chuang YC, Huang KE (2009) Activin A enhances prostate cancer cell migration through activation of androgen receptor and is overexpressed in metastatic prostate cancer. J Bone Miner Res 24:1180–1193PubMedCrossRefGoogle Scholar
  196. 196.
    Vallet S, Mukherjee S, Vaghela N, Hideshima T, Fulciniti M, Pozzi S, Santo L, Cirstea D, Patel K, Sohani AR, Guimaraes A, Xie W, Chauhan D, Schoonmaker JA, Attar E, Churchill M, Weller E, Munshi N, Seehra JS, Weissleder R, Anderson KC, Scadden DT, Raje N (2010) Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci USA 107:5124–5129PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Olsen OE, Wader KF, Hella H, Mylin AK, Turesson I, Nesthus I, Waage A, Sundan A, Holien T (2015) Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B. Cell Commun Signal. doi: 10.1186/s12964-015-0104-z PubMedPubMedCentralGoogle Scholar
  198. 198.
    Silbermann R, Bolzoni M, Storti P, Guasco D, Bonomini S, Zhou D, Wu J, Anderson JL, Windle JJ, Aversa F, Roodman GD, Giuliani N (2014) Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma. Leukemia 28:951–954PubMedCrossRefGoogle Scholar
  199. 199.
    Abdulkadyrov KM, Salogub GN, Khuazheva NK, Sherman ML, Laadem A, Barger R, Knight R, Srinivasan S, Terpos E (2014) Sotatercept in patients with osteolytic lesions of multiple myeloma. Br J Haematol 165:814–823PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Scullen T, Santo L, Vallet S, Fulciniti M, Eda H, Cirstea D, Patel K, Nemani N, Yee A, Mahindra A, Raje N (2013) Lenalidomide in combination with an activin A-neutralizing antibody: preclinical rationale for a novel anti-myeloma strategy. Leukemia 27:1715–1721PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.National Institute of Health and Medical Research (INSERM), UMR 1033LyonFrance
  2. 2.Faculty of Medicine LaennecUniversity of Lyon-1VilleurbanneFrance
  3. 3.European Cancer and Bone Metastasis Laboratory, Department of Bone Oncology and Metabolism, Mellanby Centre for Bone ResearchUniversity of SheffieldSheffieldUK

Personalised recommendations