Skip to main content
Log in

First order rigidity of non-uniform higher rank arithmetic groups

  • Published:
Inventiones mathematicae Aims and scope

Abstract

If \(\Gamma \) is an irreducible non-uniform higher-rank characteristic zero arithmetic lattice (for example \({{\,\mathrm{SL}\,}}_n({\mathbb {Z}})\), \(n \ge 3\)) and \(\Lambda \) is a finitely generated group that is elementarily equivalent to \(\Gamma \), then \(\Lambda \) is isomorphic to \(\Gamma \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baumslag, G.: Residually finite groups with the same finite images. Compos. Math. 29, 249–252 (1974)

    MathSciNet  MATH  Google Scholar 

  2. Bass, H., Lubotzky, A.: Nonarithmetic superrigid groups: counterexamples to Platonov’s conjecture. Ann. Math. (2) 151(3), 1151–1173 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borel, A., Harish-Chandra, : Arithmetic subgroups of algebraic groups. Ann. of Math. (2) 75, 485–535 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borel, A., Tits, J.: Groupes rèductifs. Inst. Ht. Ètudes Sci. Publ. Math. No. 27, 55–150 (1965)

    Article  MATH  Google Scholar 

  5. Borel, A., Tits, J.: Homomorphismes “abstraits” de groupes algèbriques simples. Ann. of Math. (2) 97, 499–571 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, J.L.: The linear homogeneous group III. Ann. of Math. (2) 71, 210–223 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corlette, K.: Archimedean superrigidity and hyperbolic geometry. Ann. of Math. (2) 135(1), 165–182 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erovenko, I.V., Rapinchuk, A.S.: Bounded generation of S-arithmetic subgroups of isotropic orthogonal groups over number fields. J. Number Theory 119(1), 28–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farb, B.: The quasi-isometry classification of lattices in semisimple Lie groups. Math. Res. Lett. 4(5), 705–717 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gromov, M., Schoen, R.: Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Inst. Ht. Études Sci. Publ. Math. No. 76, 165–246 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Houcine, O.: Homogeneity and prime models in torsion-free hyperbolic groups. Conflu. Math. 3(1), 121–155 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khelif, A.: Bi-interprètabilitè et structures QFA: ètude de groupes rèsolubles et des anneaux commutatifs. C. R. Math. Acad. Sci. Paris 345(2), 59–61 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups. J. Algebra 302(2), 451–552 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lasserre, C.: Polycyclic-by-finite groups and first-order sentences. J. Algebra 396, 18–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lasserre, C.: R. J. Thompson’s groups F and T are bi-interpretable with the ring of the integers. J. Symb. Log. 79(3), 693–711 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lubotzky, A.: Some more non-arithmetic rigid groups. Geometry, spectral theory, groups, and dynamics . Contemp. Math. 387, 237–244 (2005)

    Article  MATH  Google Scholar 

  17. Malcev, A.: On isomorphic matrix representations of infinite groups (Russian. English summary). Rec. Math. [Mat. Sbornik]N.S. 8(50), 405–422 (1940)

    MathSciNet  MATH  Google Scholar 

  18. Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17. Springer, Berlin (1991)

    Book  Google Scholar 

  19. Morgan, A.V., Rapinchuk, A.S., Sury, B.: Bounded generation of \(\text{ SL }_2\) over rings of S-integers with infinitely many units. Algebra Number Theory 12(8), 1949–1974 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mostow, G.D.: Strong Rigidity of Locally Symmetric Spaces. In: Annals of Mathematics Studies, No. 78. Princeton University Press, Princeton, University of Tokyo Press, Tokyo, p. v+195 (1973)

  21. Nies, A.: Separating classes of groups by first-order sentences. Int. J. Algebra Comput. 13(3), 287–302 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nies, A.: Comparing quasi-finitely axiomatizable and prime groups. J. Group Theory 10(3), 347–361 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oger, F.: Cancellation and elementary equivalence of finitely generated finite-by-nilpotent groups. J. Lond. Math. Soc. 30, 293–299 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Oger, F.: Elementary equivalence for finitely generated nilpotent groups and multilinear maps. Bull. Aust. Math. Soc. 58(3), 479–493 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oger, F., Sabbagh, G.: Quasi-finitely axiomatizable nilpotent groups. J. Group Theory 9(1), 95–106 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Pickel, P.F.: Finitely generated nilpotent groups with isomorphic finite quotients. Trans. Am. Math. Soc. 160, 327–341 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Raghunathan, M.S.: On the congruence subgroup problem. Inst. Ht. Tudes Sci. Publ. Math. No. 46, 107–161 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sela, Z.: Diophantine geometry over groups and the elementary theory of free and hyperbolic groups. In: Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 87–92, Higher Ed. Press, Beijing (2002)

  29. Sela, Z.: Diophantine geometry over groups. VII. The elementary theory of a hyperbolic group. Proc. Lond. Math. Soc. (3) 99(1), 217–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Serre, J.P.: Cohomologie des groupes discrets. Prospects in mathematics. In: Proceedings of Symposium, Princeton University, Princeton, (1970), pp. 77–169. Annals of Mathematics Studies, No. 70, Princeton University Press, Princeton (1971)

  31. Tavgen, O.I.: Bounded generation of Chevalley groups over rings of algebraic S-integers. Izv. Akad. Nauk. SSSR Ser. Mat. 54(1), 97–122 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Zlil Sela for fruitful conversations and insights which improved the original proof. We are also thankful to Goulnara Arzhantseva, Andre Nies, Andrei Rapinchuk and Tyakal Nanjundiah Venkataramana for pointing out to us several background references. Finally, we thank the anonymous referees for their careful reading and many suggestions. The first author was partially support by NSF Grant No. DMS-1303205 and BSF Grant No. 2012247. The second author was partially support by ERC, NSF and BSF. The third author was partially supported by ISF Grant No. 662/15 and BSF Grant No. 2014099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Meiri.

Additional information

In Memory of Daniel G. Mostow

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avni, N., Lubotzky, A. & Meiri, C. First order rigidity of non-uniform higher rank arithmetic groups. Invent. math. 217, 219–240 (2019). https://doi.org/10.1007/s00222-019-00866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-019-00866-5

Navigation