Skip to main content
Log in

Quantitative estimates of propagation of chaos for stochastic systems with \(W^{-1,\infty }\) kernels

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We derive quantitative estimates proving the propagation of chaos for large stochastic systems of interacting particles. We obtain explicit bounds on the relative entropy between the joint law of the particles and the tensorized law at the limit. We have to develop for this new laws of large numbers at the exponential scale. But our result only requires very weak regularity on the interaction kernel in the negative Sobolev space \(\dot{W}^{-1,\infty }\), thus including the Biot–Savart law and the point vortices dynamics for the 2d incompressible Navier–Stokes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. Ben Arous, G., Brunaud, M.: Méthode de Laplace: étude variationnelle des fluctuations de diffusions de type “champ moyen”. Stoch. Stoch. Rep. 31, 79–144 (1990)

    Article  Google Scholar 

  3. Benachour, S., Roynette, B., Talay, D., Vallois, P.: Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stoch. Process. Appl. 75, 173–201 (1998)

    Article  MathSciNet  Google Scholar 

  4. Berman, R.J.: Large deviations for Gibbs measures with singular Hamiltonians and emergence of Kähler–Einstein metrics. Commun. Math. Phys. 354, 1133–1172 (2017)

    Article  Google Scholar 

  5. Berman, R. J., Önnheim, M.: Propagation of chaos, Wasserstein gradient flows and toric Kähler–Einstein metrics. arXiv: 1501.07820 (2015)

  6. Berman, R.J., \(\ddot{Q}\)nnheim, M.: Propagation of chaos for a class of first order models with singular mean field interactions. arXiv:1610.04327 (2016)

  7. Bernstein, S.N.: Probability Theory. In: Gostechizdat (ed.) 4th ed. Moscow, Leningrad (in Russian) (1946)

  8. Bobkov, S.G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163, 1–28 (1999)

    Article  MathSciNet  Google Scholar 

  9. Bodineau, T., Gallagher, I., Saint-Raymond, L.: From hard sphere dynamics to the Stokes–Fourier equations: an \(L^2\) analysis of the Boltzmann–Grad limit. Ann. PDE (2017). https://doi.org/10.1007/s40818-016-0018-0

  10. Bolley, F., Cañizo, J.A., Carrillo, J.A.: Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Models Methods Appl. Sci. 21, 2179–2210 (2011)

    Article  MathSciNet  Google Scholar 

  11. Bolley, F., Guillin, A., Malrieu, F.: Trend to equilibrium and particle approximation for a weakly self-consistent Vlasov–Fokker–Planck equation. Math. Models Numer. Anal. 44, 867–884 (2010)

    Article  Google Scholar 

  12. Bolley, F., Villani, C.: Weighted Csiszr–Kullback–Pinsker inequalities and applications to transportation inequalities. In: Annales-Faculte Des Sciences Toulouse Mathematiques, vol. 14, no. 3, p. 331. Université Paul Sabatier (2005)

  13. Bolthausen, E.: Laplace approximation for sums of independent random vectors I. (The non degenerate case). Probab. Theory Relat. Fields 72, 305–318 (1986)

    Article  MathSciNet  Google Scholar 

  14. Bourgain, J., Brézis, H.: On the equation div Y = f and application to control of phases. J. Am. Math. Soc. 16, 393–426 (2003)

    Article  MathSciNet  Google Scholar 

  15. Carrapatoso, K.: Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinet. Relat. Models 9, 1–49 (2016)

    Article  MathSciNet  Google Scholar 

  16. Carrillo, J.A., Choi, Y.-P., Hauray, M.: The derivation of swarming models: mean field limit and Wasserstein distances. In: Muntean, A., Toschi, F. (eds.) Collective Dynamics from Bacteria to Crowds. Volume 553 of CISM International Center for Mechanical Sciences, pp. 1–46. Springer, Vienna (2014)

    Google Scholar 

  17. Carrillo, J.A., Choi, Y.-P., Hauray, M., Salem, S.: Mean-field limit for collective behavior models with sharp sensitivity regions. J. Eur. Math. Soc. arXiv:1510.02315 (2015)

  18. Carrillo, J.A., DiFrancesco, M., Figalli, A., Laurent, T., Slepcev, D.: Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156, 229–271 (2011)

    Article  MathSciNet  Google Scholar 

  19. Carrillo, J.A., Lisini, S., Mainini, E.: Gradient flows for non-smooth interaction potentials. Nonlinear Anal. 100, 122–147 (2014)

    Article  MathSciNet  Google Scholar 

  20. Cattiaux, P., Guillin, A., Malrieu, F.: Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Relat. Fields 140, 19–40 (2008)

    Article  MathSciNet  Google Scholar 

  21. Cépa, E., Lépingle, D.: Diffusing particles with electrostatic repulsion. Probab. Theory. Rel. Fields 107, 429–449 (1997)

    Article  MathSciNet  Google Scholar 

  22. Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. 1, 197–227 (2007)

    Article  MathSciNet  Google Scholar 

  23. Dawsont, D.A., Gärtner, J.: Large deviations from the McKean–Vlasov limit for weakly interacting diffusions. Stochastics 20, 247–308 (1987)

    Article  MathSciNet  Google Scholar 

  24. Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)

    Article  MathSciNet  Google Scholar 

  25. Duerinckx, M.: Mean-field limits for some Riesz interaction gradient flows. SIAM J. Math. Anal. 48, 2269–2300 (2016)

    Article  MathSciNet  Google Scholar 

  26. Duerinckx, M., Serfaty, S.: Mean-field dynamics for Ginzburg–Landau vortices with pinning and applied force. arXiv:1702.01919 (2017)

  27. Erdős, L., Yau, H.-T.: A Dynamical Approach to Random Matrix Theory, vol. 28. American Mathematical Society, Providence (2017)

    MATH  Google Scholar 

  28. Fathi, M.: A two-scale approach to the hydrodynamic limit part II: local Gibbs behavior. ALEA Lat. Am. J Probab. Math. Stat. 10, 625–651 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  Google Scholar 

  30. Fetecau, R.C., Sun, W.: First-order aggregation models and zero inertia limits. J. Differ. Equ. 259, 6774–6802 (2015)

    Article  MathSciNet  Google Scholar 

  31. Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254, 109–153 (2008)

    Article  MathSciNet  Google Scholar 

  32. Flandoli, F., Gubinelli, M., Priola, E.: Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations. Stoch. Process. Appl. 121, 1445–1463 (2011)

    Article  MathSciNet  Google Scholar 

  33. Fontbona, J.: Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion. Stoch. Process. Their Appl. 112, 119–144 (2004)

    Article  MathSciNet  Google Scholar 

  34. Fontbona, J., Jourdain, B.: A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations. Ann. Probab. 44, 131–170 (2016)

    Article  MathSciNet  Google Scholar 

  35. Fournier, N., Hauray, M.: Propagation of chaos for the Landau equation with the moderately soft potential. Annal. Probab. 44, 3581–3660 (2016)

    Article  MathSciNet  Google Scholar 

  36. Fournier, N., Hauray, M., Mischler, S.: Propagation of chaos for the 2D viscous vortex model. J. Eur. Math. Soc. 16, 1425–1466 (2014)

    Article  MathSciNet  Google Scholar 

  37. Fournier, N., Jourdain, B.: Stochastic particle approximation of the Keller–Segel equation and two-dimensional generalization of Bessel process. Ann. Appl. Probab. 27, 2807–2861 (2017)

    Article  MathSciNet  Google Scholar 

  38. Fournier, N., Mischler, S.: Rate of convergence of the Nanbu particle system for hard potentials and Maxwell molecules. Ann. Probab. 44, 589–627 (2016)

    Article  MathSciNet  Google Scholar 

  39. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard spheres and short-range potentials. In: EMS Zurich Lectures in Advanced Mathematics, vol. 18. European Mathematical Society (EMS), Zürich (2013)

  40. Godinh, D., Quininao, C.: Propagation of chaos for a sub-critical Keller–Segel model. Ann. Inst. H. Poincaré Probab. Stat. 51, 965–992 (2015)

    Article  Google Scholar 

  41. Golse, F.: On the dynamics of large particle systems in the mean field limit. In: Muntean, A., Rademacher, J., Zagaris, A. (eds.) Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field limits and Ergodicity. Lecture Notes in Applied Mathematics and Mechanics, vol. 3, pp. 1–144. Springer, Cham (2016)

    Google Scholar 

  42. Golse, F.: From the N-body Schrödinger equation to the Vlasov equation. In: Gonçalves, P., Soares, A. (eds.) From Particle Systems to Partial Differential Equations. PSPDE 2015. Springer Proceedings in Mathematics & Statistics, vol. 209, pp. 199–219. Springer, Cham (2017)

    Google Scholar 

  43. Golse, F., Mouhot, C., Paul, T.: Empirical measures and Vlasov hierarchies. Kinet. Relat. Models 6, 919–943 (2013)

    Article  MathSciNet  Google Scholar 

  44. Goodman, J., Hou, T.Y.: New stability estimates for the \(2\)-D vortex method. Commun. Pure Appl. Math. 44, 1015–1031 (1991)

    Article  MathSciNet  Google Scholar 

  45. Goodman, J., Hou, T.Y., Lowengrub, J.: Convergence of the point vortex method for the 2-D euler equations. Commun. Pure Appl. Math. 43, 415–430 (1990)

    Article  MathSciNet  Google Scholar 

  46. Graham, C., Méléard, S.: Stochastic particle approximation for generalized Boltzmann models and convergence estimates. Ann. Probab. 25, 115–132 (1997)

    Article  MathSciNet  Google Scholar 

  47. Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear Diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988)

    Article  MathSciNet  Google Scholar 

  48. Hauray, M.: Wasserstein distances for vortices approximation of Euler-type equations. Math. Models Methods Appl. Sci. 19, 1357–1384 (2009)

    Article  MathSciNet  Google Scholar 

  49. Hauray, M., Jabin, P.-E.: Particle approximation of Vlasov equations with singular forces. Ann. Sci. Ecole Norm. Supér. 48, 891–940 (2015)

    Article  MathSciNet  Google Scholar 

  50. Hauray, M., Mischler, S.: On Kac’s chaos and related problems. J. Funct. Anal. 266, 6055–6157 (2014)

    Article  MathSciNet  Google Scholar 

  51. Hauray, M., Salem, S.: Propagation of chaos for the Vlasov–Poisson–Fokker–Planck system in 1D. arXiv:1510.06260 (2015)

  52. Has̆kovec, J., Schmeiser, C.: Convergence of a stochastic particle approximation for measure solutions of the 2D Keller–Segel system. Commun. Partial Differ. Equ. 36, 940–960 (2011)

    Article  MathSciNet  Google Scholar 

  53. Holding, T.: Propagation of chaos for Hölder continuous interaction kernels via Glivenko–Cantelli. arXiv:1608.02877 (2016)

  54. Itô, K.: On stochastic differential equations. Mem. Am. Math. Soc. 4, 1–51 (1951)

    Google Scholar 

  55. Jabin, P.E.: A review of mean field limits for Vlasov equations. Kinet. Relat. Models 7, 661–711 (2014)

    Article  MathSciNet  Google Scholar 

  56. Jabin, P.-E., Wang, Z.: Mean field limit and propagation of chaos for Vlasov systems with bounded forces. J. Funct. Anal. 271, 3588–3627 (2016)

    Article  MathSciNet  Google Scholar 

  57. Jabin, P.-E., Wang, Z.: Mean field limit for stochastic particle systems. In: Bellomo, N., Degond, P., Tadmor, E. (eds.) Active Particles. Volume 1, Theory, Models, Applications, pp. 379–402. Birkhauser-Springer, Boston (2017)

    Chapter  Google Scholar 

  58. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley (1956)

  59. Kipnis, C., Landim, C.: Scaling limit of interacting particle systems. In: Berger, M., Coates, J., Varadhan, S.R.S. (eds.) Grundlehren der mathematischen Wissenschaften, vol. 320. Springer, New York (1999)

    Google Scholar 

  60. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298, 101–138 (2010)

    Article  MathSciNet  Google Scholar 

  61. Krause, U.: A discrete nonlinear and non-autonomous model of consensus formation. In: Communications in Difference Equations, Proceedings of the Fourth International Conference on Difference Equations, pp. 227–236. CRC Press (2000)

  62. Lazarovici, D.: The Vlasov–Poisson dynamics as the mean field limit of extended charges. Commun. Math. Phys. 347, 271–289 (2016)

    Article  MathSciNet  Google Scholar 

  63. Lazarovici, D., Pickl, P.: A mean-field limit for the Vlasov–Poisson system. Arch. Ration. Mech. Anal. (2017). https://doi.org/10.1007/s00205-017-1125-0

    Article  MathSciNet  Google Scholar 

  64. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of Log and Riesz gases. Invent. Math. 210, 645–757 (2017)

    Article  MathSciNet  Google Scholar 

  65. Liu, J.-G., Xin, Z.: Convergence of the point vortex method for 2-D vortex sheet. Math. Comput. 70, 595–606 (2000)

    Article  MathSciNet  Google Scholar 

  66. Liu, J.G., Yang, R.: Propagation of chaos for large Brownian particle system with Coulomb interaction. Res. Math. Sci. (2016). https://doi.org/10.1186/s40687-016-0086-5

    Article  MathSciNet  MATH  Google Scholar 

  67. Malrieu, F.: Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stoch. Process. Appl. 95, 109–132 (2001)

    Article  MathSciNet  Google Scholar 

  68. McKean, H.P. Jr.: Propagation of chaos for a class of non-linear parabolic equations. In: Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic University, 1967), pp. 41–57. Air Force Office of Scientific Research, Arlington (1967)

  69. Mischler, S., Mouhot, C.: Kac’s program in kinetic theory. Invent. Math. 193, 1–147 (2013)

    Article  MathSciNet  Google Scholar 

  70. Mischler, S., Mouhot, C., Wennberg, B.: A new approach to quantitative chaos propagation for drift, diffusion and jump process. Probab. Theory Relat. Fields 161, 1–59 (2015)

    Article  Google Scholar 

  71. Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144, 923–947 (2011)

    Article  MathSciNet  Google Scholar 

  72. Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56, 577–621 (2014)

    Article  MathSciNet  Google Scholar 

  73. Osada, H.: A stochastic differential equation arising from the vortex problem. Proc. Jpn. Acad. Ser. A Math. Sci. 61, 333–336 (1986)

    Article  MathSciNet  Google Scholar 

  74. Osada, H.: Propagation of chaos for the two dimensional Navier–Stokes equation. In: Probabilistic Methods in Mathematical Physics (Katata Kyoto, 1985), pp. 303–334. Academic Press, Boston (1987)

  75. Paul, T., Pulvirenti, M., Simonella, S.: On the size of chaos in the mean field dynamics. arXiv:1708.07701 (2017)

  76. Phuc, N.C., Torres, M.: Characterizations of the existence and removable singularities of divergence-measure vector fields. Indiana Univ. Math. J. 57, 1573–1597 (2008)

    Article  MathSciNet  Google Scholar 

  77. Prokhorov, Y.V.: An extension of SN Bernstein’s inequalities to the multidimensional case (in Russian). Teor. Veroyatn. i Primem 13, 266–274 (1968)

    Google Scholar 

  78. Saint-Raymond, L.: Exchangeability, chaos and dissipation in large systems of particles. Eur. Math. Soc. Newsl. 100, 19–25 (2016)

    MathSciNet  MATH  Google Scholar 

  79. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57, 1627–1672 (2004)

    Article  MathSciNet  Google Scholar 

  80. Schochet, S.: The point-vortex method for periodic weak solutions of the 2-D Euler equations. Commun. Pure Appl. Math. 49, 911–965 (1996)

    Article  MathSciNet  Google Scholar 

  81. Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discret. Contin. Dyn. Syst. 31, 1427–1451 (2011)

    Article  MathSciNet  Google Scholar 

  82. Serfaty, S.: Mean field limits of the Gross–Pitaevskii and parabolic Ginzburg–Landau equations. J. Am. Math. Soc. 30, 713–768 (2017)

    Article  MathSciNet  Google Scholar 

  83. Serfaty, S: Mean field limit for Coulomb flows. arXiv:1803.08345 (2018)

  84. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  85. Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’été de probabilités de Saint-Flour XIX-1989, vol. 1464 of Lecture Notes in Maths, pp. 165–251. Springer, Berlin (1991)

    Google Scholar 

  86. Tadmor, E.: Hierarchical construction of bounded solutions in critical regularity spaces. Commun. Pure Appl. Math. 69, 1087–1109 (2016)

    Article  MathSciNet  Google Scholar 

  87. Varadhan, S.R.S.: Large deviations and applications. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 46. Society for Industrial and Applied Mathematics, Philadelphia (1984)

  88. Villani, C.: Optimal Transport, Old and New. In: Chenciner, A., Coates, J., Varadhan, S.R.S. (eds.) Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Berlin (2008)

  89. Yau, H.-T.: Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys. 22, 63–80 (1991)

    Article  MathSciNet  Google Scholar 

  90. Yurinskii, V.V.: Exponential inequalities for sums of random vectors. J. Multivar. Anal. 6, 473–499 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfu Wang.

Additional information

P. E. Jabin is partially supported by NSF Grant 1312142 and by NSF Grant RNMS (Ki-Net) 1107444. Z. Wang is partially supported by NSF Grant 1312142 and Ann G. Wylie Dissertation Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabin, PE., Wang, Z. Quantitative estimates of propagation of chaos for stochastic systems with \(W^{-1,\infty }\) kernels. Invent. math. 214, 523–591 (2018). https://doi.org/10.1007/s00222-018-0808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-018-0808-y

Mathematics Subject Classification

Navigation