Comparison of proteome alterations during aging in the temporal lobe of humans and rhesus macaques

Abstract

Rhesus macaques are widely used as animal models for studies of the nervous system; however, it is unknown whether the alterations in the protein profile of the brain during aging are conserved between humans and rhesus macaques. In this study, temporal cortex samples from old and young humans (84 vs. 34 years, respectively) or rhesus macaques (20 vs. 6 years, respectively) were subjected to tandem mass tag-labeled proteomic analysis followed by bioinformatic analysis. A total of 3861 homologous pairs of proteins were identified during the aging process. The conservatively upregulated proteins (n = 190) were involved mainly in extracellular matrix (ECM), focal adhesion and coagulation; while, the conservatively downregulated proteins (n = 56) were enriched in ribosome. Network analysis showed that these conservatively regulated proteins interacted with each other with respect to protein synthesis and cytoskeleton–ECM connection. Many proteins in the focal adhesion, blood clotting, complement and coagulation, and cytoplasmic ribosomal protein pathways were regulated in the same direction in human and macaque; while, proteins involved in oligodendrocyte specification and differentiation pathways were downregulated during human aging, and many proteins in the electron transport chain pathway showed differences in the altered expression profiles. Data are available via ProteomeXchange with identifier PXD013597. Our findings suggest similarities in some changes in brain protein profiles during aging both in humans and macaques, although other changes are unique to only one of these species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alexander GE, Chen K, Aschenbrenner M et al (2008) Age-related regional network of magnetic resonance imaging gray matter in the rhesus macaque. J Neurosci 28:2710–2718

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bai L, Hof PR, Standaert DG, Xing Y, Nelson SE, Young AB, Magnusson KR (2004) Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiol Aging 25:201–208

    CAS  PubMed  Google Scholar 

  3. Bergamaschini L, Donarini C, Foddi C, Gobbo G, Parnetti L, Agostoni A (2001) The region 1–11 of Alzheimer amyloid-β is critical for activation of contact-kinin system. Neurobiol Aging 22:63–69

    CAS  PubMed  Google Scholar 

  4. Blin P, Dureau-Pournin C, Foubert-Samier A et al (2015) Parkinson's disease incidence and prevalence assessment in France using the national healthcare insurance database. Eur J Neurol 22:464–471

    CAS  PubMed  Google Scholar 

  5. Cescon M, Chen P, Castagnaro S, Gregorio I, Bonaldo P (2016) Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging. Aging (Albany NY) 8:1083

    CAS  Google Scholar 

  6. Chen Z-L, Yao Y, Norris EH, Kruyer A, Jno-Charles O, Akhmerov A, Strickland S (2013) Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J Cell Biol 202:381–395

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen Z-L, Revenko AS, Singh P, MacLeod AR, Norris EH, Strickland S (2017) Depletion of coagulation factor XII ameliorates brain pathology and cognitive impairment in Alzheimer disease mice. Blood 129:2547–2556

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng JS, Dubal DB, Kim DH et al (2009) Collagen VI protects neurons against Aβ toxicity. Nat Neurosci 12:119–121

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng I, Lin Y-C, Hwang E, Huang H-T, Chang W-H, Liu Y-L, Chao C-Y (2011) Collagen VI protects against neuronal apoptosis elicited by ultraviolet irradiation via an Akt/phosphatidylinositol 3-kinase signaling pathway. Neuroscience 183:178–188

    CAS  PubMed  Google Scholar 

  10. Choi J-H, Riew T-R, Kim HL, Jin X, Lee M-Y (2017) Desmin expression profile in reactive astrocytes in the 3-nitropropionic acid–lesioned striatum of rat: Characterization and comparison with glial fibrillary acidic protein and nestin. Acta Histochem 119:795–803

    CAS  PubMed  Google Scholar 

  11. Cullen KM, Kócsi Z, Stone J (2005) Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J Cereb Blood Flow Metab 25:1656–1667

    CAS  PubMed  Google Scholar 

  12. Cullen KM, Kócsi Z, Stone J (2006) Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging 27:1786–1796

    CAS  PubMed  Google Scholar 

  13. Davalos D, Akassoglou K (2012) Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 34:43–62

    CAS  PubMed  Google Scholar 

  14. Davalos D, Ryu JK, Merlini M et al (2012) Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 3:1227

    PubMed  PubMed Central  Google Scholar 

  15. Ding Q, Markesbery WR, Chen Q, Li F, Keller JN (2005) Ribosome dysfunction is an early event in Alzheimer's disease. J Neurosci 25:9171–9175

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fang EF, Scheibye-Knudsen M, Jahn HJ et al (2015) A research agenda for aging in China in the 21st century. Ageing Res Rev 24:197–205

    PubMed  PubMed Central  Google Scholar 

  17. Flood DG, Coleman PD (1988) Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data. Neurobiol Aging 9:453–463

    CAS  PubMed  Google Scholar 

  18. Gonskikh Y, Polacek N (2017) Alterations of the translation apparatus during aging and stress response. Mech Ageing Dev 168:30–36

    CAS  PubMed  Google Scholar 

  19. Goos JD, Kester M, Barkhof F, Klein M, Blankenstein MA, Scheltens P, van der Flier WM (2009) Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke 40:3455–3460

    PubMed  Google Scholar 

  20. Han H, Myllykoski M, Ruskamo S, Wang C, Kursula P (2013) Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules. Bio Factors 39:233–241

    CAS  Google Scholar 

  21. Hawkes CA, Michalski D, Anders R et al (2013) Stroke-induced opposite and age-dependent changes of vessel-associated markers in co-morbid transgenic mice with Alzheimer-like alterations. Exp Neurol 250:270–281

    PubMed  Google Scholar 

  22. Hoeffer CA, Cowansage KK, Arnold EC et al (2011) Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. Proc Natl Acad Sci USA 108:3383–3388

    CAS  PubMed  Google Scholar 

  23. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    CAS  Google Scholar 

  24. Ji K, Tsirka SE (2012) Inflammation modulates expression of laminin in the central nervous system following ischemic injury. J Neuroinflammation 9:159

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kinsella RJ, Kähäri A, Haider S et al (2011) Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database. https://doi.org/10.1093/database/bar030

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koren SA, Hamm MJ, Meier SE et al (2019) Tau drives translational selectivity by interacting with ribosomal proteins. Acta Neuropathol 137:571–583

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lacoste B, Tong X-K, Lahjouji K, Couture R, Hamel E (2013) Cognitive and cerebrovascular improvements following kinin B 1 receptor blockade in Alzheimer’s disease mice. J Neuroinflammation 10:850

    Google Scholar 

  28. Langhauser F, Göb E, Kraft P et al (2012) Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain barrier damage, and inflammation. Blood 120:4082–4092

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Han F, Shi Y (2015) Changes in integrin αv, vinculin and connexin43 in the medial prefrontal cortex in rats under single-prolonged stress. Mol Med Rep 11:2520–2526

    CAS  PubMed  Google Scholar 

  30. Liao C, Han Q, Ma Y, Su B (2016) Age-related gene expression change of GABAergic system in visual cortex of rhesus macaque. Gene 590:227–233

    CAS  PubMed  Google Scholar 

  31. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787

    CAS  PubMed  Google Scholar 

  32. Lintl P, Braak H (1983) Loss of intracortical myelinated fibers: a distinctive age-related alteration in the human striate area. Acta Neuropathol 61:178–182

    CAS  PubMed  Google Scholar 

  33. Liu C, Sun F-C, Zhang B (2018) Brain-inspired multimodal learning based on neural networks. Brain Sci Adv 4(1):61–72. https://doi.org/10.26599/bsa.2018.9050004

    Article  Google Scholar 

  34. Loerch PM, Lu T, Dakin KA et al (2008) Evolution of the aging brain transcriptome and synaptic regulation. PLoS ONE 3:e3329

    PubMed  PubMed Central  Google Scholar 

  35. Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H (2014) The extracellular matrix protein laminin α2 regulates the maturation and function of the blood–brain barrier. J Neurosci 34:15260–15280

    PubMed  PubMed Central  Google Scholar 

  36. Meng L, Zhao J, Liu J, Li S (2019) Cerebral small vessel disease and cognitive impairment. J Neurorestoratology 7(4):184–195

    Google Scholar 

  37. Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Moreno JA, Radford H, Peretti D et al (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485:507

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Morozov YM, Datta D, Paspalas CD, Arnsten AF (2017) Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex. Neurobiol Aging 51:9–18

    CAS  PubMed  Google Scholar 

  40. Nakayama H, Uchida K, Doi K (2004) A comparative study of age-related brain pathology–are neurodegenerative diseases present in nonhuman animals? Med Hypotheses 63:198–202

    PubMed  Google Scholar 

  41. Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F (2018) Implication of the kallikrein-kinin system in neurological disorders: quest for potential biomarkers and mechanisms. Prog Neurobiol 165:26–50

    PubMed  Google Scholar 

  42. Pandya JD, Grondin R, Yonutas HM, Haghnazar H, Gash DM, Zhang Z, Sullivan PG (2015) Decreased mitochondrial bioenergetics and calcium buffering capacity in the basal ganglia correlates with motor deficits in a nonhuman primate model of aging. Neurobiol Aging 36:1903–1913

    CAS  PubMed  Google Scholar 

  43. Perez-Riverol Y, Csordas A, Bai J et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450

    CAS  PubMed  Google Scholar 

  44. Peters A, Kemper T (2012) A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiol Aging 33:2357–2372

    PubMed  Google Scholar 

  45. Petersen MA, Ryu JK, Chang K-J et al (2017) Fibrinogen activates BMP signaling in oligodendrocyte progenitor cells and inhibits remyelination after vascular damage. Neuron 96:1003–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Qiu W, Zhang H, Bao A et al (2018) Standardized operational protocol for Human Brain Banking in China. Neurosci Bull 35:270–276

    PubMed  PubMed Central  Google Scholar 

  47. Rauch U (2004) Extracellular matrix components associated with remodeling processes in brain. Cell Mol Life Sci 61:2031–2045

    CAS  PubMed  Google Scholar 

  48. Rilling JK (2014) Comparative primate neuroimaging: insights into human brain evolution. Trends Cogn Sci 18:46–55

    PubMed  Google Scholar 

  49. Rocca WA, Petersen RC, Knopman DS et al (2011) Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement 7:80–93

    PubMed  PubMed Central  Google Scholar 

  50. Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK (2004) Aging in rhesus monkeys: relevance to human health interventions. Science 305:1423–1426

    CAS  PubMed  Google Scholar 

  51. Ryu JK, McLarnon JG (2009) A leaky blood–brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13:2911–2925

    CAS  PubMed  Google Scholar 

  52. Schachtrup C, Ryu JK, Helmrick MJ et al (2010) Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage. J Neurosci 30:5843–5854

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Simmons H (2016) Age-associated pathology in Rhesus macaques (Macaca mulatta). Vet Pathol 53:399–416

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Somel M, Guo S, Fu N et al (2010) MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 20:1207–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomsen MS, Routhe LJ, Moos T (2017) The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 37:3300–3317

    PubMed  PubMed Central  Google Scholar 

  56. Turner CE (2000) Paxillin and focal adhesion signalling. Nat Cell Biol 2:E231

    CAS  PubMed  Google Scholar 

  57. Wei Y-N, Hu H-Y, Xie G-C, Fu N, Ning Z-B, Zeng R, Khaitovich P (2015) Transcript and protein expression decoupling reveals RNA binding proteins and miRNAs as potential modulators of human aging. Genome Biol 16:41

    PubMed  PubMed Central  Google Scholar 

  58. Xu B, Xiong F, Tian R et al (2016) Temporal lobe in human aging: a quantitative protein profiling study of samples from Chinese Human Brain Bank. Exp Gerontol 73:31–41

    CAS  PubMed  Google Scholar 

  59. Xu J, Wang J, Wimo A, Fratiglioni L, Qiu C (2017) The economic burden of dementia in China, 1990–2030: implications for health policy. Bull World Health Organ 95:18–26

    PubMed  Google Scholar 

  60. Yang W, Wang G, Wang C-E et al (2015) Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 35:8345–8358

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang Y-H, Fuh J-L, Mok VCT (2018) Vascular contribution to cognition in stroke and Alzheimer's disease. Brain Sci Adv 4(1):39–48. https://doi.org/10.26599/bsa.2018.9050001

    Article  Google Scholar 

  62. Yoon HH, Min J, Jeon SR (2018) Optogenetics to restore neural circuit function in Parkinson’s disease. J Neurorestoratology 6(1):88–92

    Google Scholar 

  63. Zhang H, Chen K, Wang N et al (2018) Analysis of brain donors' demographic and medical characteristics to facilitate the construction of a Human Brain Bank in China. J Alzheimers Dis 66:1245–1254

    PubMed  Google Scholar 

  64. Zhao Q, Lu J, Yao Z, Wang S, Zhu L, Wang J, Chen B (2017) Upregulation of Aβ42 in the brain and bodily fluids of rhesus monkeys with aging. J Mol Neurosci 61:79–87

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (NSFC #81801180, #81971023); and the CAMS Innovation Fund for Medical Sciences (CIFMS #2016-I2M-2-001).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Ge or Zhanlong He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The present study was approved by the Ethics Committee of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (Approval Number: 009-2014).

Informed consent

Informed consent was obtained from all donors or their next-of-kin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Sreedharan Sajikumar.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, K., Pan, M. et al. Comparison of proteome alterations during aging in the temporal lobe of humans and rhesus macaques. Exp Brain Res (2020). https://doi.org/10.1007/s00221-020-05855-2

Download citation

Keywords

  • Temporal lobe
  • Aging
  • Proteomics
  • Extracellular matrix
  • Ribosomes