Skip to main content
Log in

Improving the functionality, robustness, and adaptability of myoelectric control for dexterous motion restoration

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The development of advanced and effective human–machine interfaces, especially for amputees to control their prostheses, is very high priority and a very active area of research. An intuitive control method should retain an adequate level of functionality for dexterous operation, provide robustness against confounding factors, and supply adaptability for diverse long-term usage, all of which are current problems being tackled by researchers. This paper reviews the state-of-the-art, as well as, the limitations of current myoelectric signal control (MSC) methods. To address the research topic on functionality, we review different approaches to prosthetic hand control (DOF configuration, discrete or simultaneous, etc.), and how well the control is performed (accuracy, response, intuitiveness, etc.). To address the research on robustness, we review the confounding factors (limb positions, electrode shift, force variance, and inadvertent activity) that affect the stability of the control performance. Lastly, to address adaptability, we review the strategies that can automatically adjust the classifier for different individuals and for long-term usage. This review provides a thorough overview of the current MSC methods and helps highlight the current areas of research focus and resulting clinic usability for the MSC methods for upper-limb prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

EMG:

Electromyograms

ENG:

Electroneurography

EEG:

Electroencephalograhy

EcoG:

Electrocorticography

iEMG:

Intramuscular EMG

sEMG:

Surface EMG

HD-EMG:

High-density EMG

MU:

Motor unit

DOF:

Degree of freedom

MSC:

Myoelectric signal control

PR:

Pattern recognition

PR-MSC:

PR-based MSC

R-MSC:

Regression-based MSC

E-MSC:

Encoding-based MSC

S-MSC:

Synergy-based MSC

PCA:

Principal components analysis

TMR:

Targeted muscle reinnervation

CA:

Classification accuracy

TPR:

True positives rate

FPR:

False positives rate

GUI:

Graphic user interfaces

SHAP:

Southampton hand assessment procedure

TD/FD:

Time/frequency domain

CWT:

Continuous wavelet transform

TENS:

Transcutaneous electric nerve stimulus

HMI:

Human–machine interface

SVM:

Support vector machine

SVDD:

Support vector domain description

DA:

Domain adaptation

LDA:

Linear discriminant analysis

CMCA:

Common model component analysis

RFID:

Radio frequency identification

IMU:

Inertial measurement unit

References

  • Adewuyi AA, Hargrove LJ, Kuiken TA (2016) An analysis of intrinsic and extrinsic hand muscle EMG for improved pattern recognition control. IEEE Trans Neural Syst Rehabil Eng 24:485–494

    Article  PubMed  Google Scholar 

  • Al-Timemy AH, Khushaba RN, Bugmann G, Escudero J (2016) Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Trans Neural Syst Rehabil Eng 24:650–661. https://doi.org/10.1109/TNSRE.2015.2445634

    Article  PubMed  Google Scholar 

  • Ameri A, Kamavuako E, Scheme E, Englehart K, Parker P (2014a) Support vector regression for improved real-time, simultaneous myoelectric control. IEEE Trans Neural Syst Rehabil Eng 22:1198–1209. https://doi.org/10.1109/tnsre.2014.2323576

    Article  PubMed  Google Scholar 

  • Ameri A, Kamavuako EN, Scheme EJ, Englehart KB, Parker PA (2014b) Real-time, simultaneous myoelectric control using visual target-based training paradigm. Biomed Signal Process Control 13:8–14. https://doi.org/10.1016/j.bspc.2014.03.006

    Article  Google Scholar 

  • Ameri A, Scheme EJ, Kamavuako EN, Englehart KB, Parker PA (2014c) Real-time, simultaneous myoelectric control using force and position-based training paradigms. IEEE Trans Biomed Eng 61:279–287. https://doi.org/10.1109/tbme.2013.2281595

    Article  PubMed  Google Scholar 

  • Anam K, Al-Jumaily A (2017) Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees. Neural Netw 85:51–68

    Article  Google Scholar 

  • Atzori M, Muller H (2015) Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview. Front Syst Neurosci 9:162. https://doi.org/10.3389/fnsys.2015.00162

    Article  PubMed  PubMed Central  Google Scholar 

  • Atzori M, Cognolato M, Müller H (2016) Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Front Neurorobotics 10:9

    Article  Google Scholar 

  • Belter JT, Segil J, Dollar AM, Weir RF (2013) Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J Rehabil Res Dev 50:599–618

    Article  PubMed  Google Scholar 

  • Betthauser JL, Hunt CL, Osborn LE, Masters MR, Levay G, Kaliki RR, Thakor NV (2017) Limb position tolerant pattern recognition for myoelectric prosthesis control with adaptive sparse representations from extreme learning. IEEE Trans Biomed Eng PP:1–1. https://doi.org/10.1109/TBME.2017.2719400

    Article  Google Scholar 

  • Biddiss E, Chau T (2007) Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil 86:977–987

    Article  PubMed  Google Scholar 

  • Brown CY, Asada HH (2007) Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In: The 2007 IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, USA

  • Bullock IM, Feix T, Dollar AM (2015) The Yale human grasping dataset: grasp, object, and task data in household and machine shop environments. Int J Robot Res 34:251–255

    Article  Google Scholar 

  • Castellini C, van der Smagt P (2009) Surface EMG in advanced hand prosthetics. Biol Cybern 100:35–47

    Article  PubMed  Google Scholar 

  • Castellini C, van der Smagt P (2013) Evidence of muscle synergies during human grasping. Biol Cybern 107:233–245. https://doi.org/10.1007/s00422-013-0548-4

    Article  PubMed  Google Scholar 

  • Castellini C, Fiorilla AE, Sandini G (2009) Multi-subject/daily-life activity EMG-based control of mechanical hands. J Neuroeng Rehabil 6:1–11. https://doi.org/10.1186/1743-0003-6-41

    Article  Google Scholar 

  • Castellini C, Artemiadis P, Wininger M et al (2014a) Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography. Front Neurorobotics 8:22

    Article  Google Scholar 

  • Castellini C, Artemiadis P, Wininger M et al (2014b) Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography. Front Neurorobotics 8:21–17 https://doi.org/10.3389/fnbot.2014.00022

    Article  Google Scholar 

  • Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A (2014) Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int J Robot Res 33:768–782. https://doi.org/10.1177/0278364913518998

    Article  Google Scholar 

  • Celadon N, Došen S, Binder I, Ariano P, Farina D (2016) Proportional estimation of finger movements from high-density surface electromyography. J Neuroeng Rehabil 13:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhang D, Zhu X (2013) Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control. J Neuroeng Rehabil 10:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Cloutier A, Yang J (2013) Control of hand prostheses: a literature review. In: ASME 2013 international design engineering technical conferences and computers and information in engineering conference, Volume 6A: 37th mechanisms and robotics conference. ASME, Portland, Oregon, USA, p V06AT07A016

  • Daley H, Englehart K, Hargrove L, Kuruganti U (2012) High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. J Electromyogr Kinesiol 22:478–484. https://doi.org/10.1016/j.jelekin.2011.12.012

    Article  PubMed  Google Scholar 

  • Dalley SA, Varol HA, Goldfarb M (2012) A method for the control of multigrasp myoelectric prosthetic hands. IEEE Trans Neural Syst Rehabil Eng 20:58–67

    Article  PubMed  Google Scholar 

  • Earley EJ, Hargrove LJ (2016) The effect of wrist position and hand-grasp pattern on virtual prosthesis task performance. In: 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 542–547

  • Earley EJ, Hargrove LJ, Kuiken TA (2016) Dual window pattern recognition classifier for improved partial-hand prosthesis control. Front Neurosci 10:58. https://doi.org/10.3389/fnins.2016.00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott JM, Connolly K (1984) A classification of manipulative hand movements. Dev Med Child Neurol 26:283–296

    Article  CAS  PubMed  Google Scholar 

  • Englehart K, Hudgins B (2003) A Robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 50:848–854

    Article  PubMed  Google Scholar 

  • Fang YF, Hettiarachchi N, Zhou DL, Liu HH (2015) Multi-modal sensing techniques for interfacing hand prostheses: a review. IEEE Sens J 15:6065–6076. https://doi.org/10.1109/jsen.2015.2450211

    Article  Google Scholar 

  • Farina D, Aszmann O (2014) Bionic limbs: clinical reality and academic promises. Sci Transl Med 6:257ps212–257ps212

    Article  Google Scholar 

  • Farina D, Holobar A, Merletti R, Enoka RM (2010) Decoding the neural drive to muscles from the surface electromyogram. Clin Neurophysiol 121:1616–1623. https://doi.org/10.1016/j.clinph.2009.10.040

    Article  PubMed  Google Scholar 

  • Farina D, Ning J, Rehbaum H, Holobar A, Graimann B, Dietl H, Aszmann OC (2014) The Extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng. 22:797–809. https://doi.org/10.1109/TNSRE.2014.2305111

    Article  PubMed  Google Scholar 

  • Farrell TR, Weir RF (2007) The optimal controller delay for myoelectric prostheses. IEEE Trans Neural Syst Rehabil Eng 15:111–118

    Article  PubMed  Google Scholar 

  • Feix T, Romero J, Schmiedmayer H-B, Dollar AM, Kragic D (2015) The GRASP taxonomy of human grasp types. J Mech Robot. https://doi.org/10.1115/1111.403240

    Article  Google Scholar 

  • Ficuciello F, Palli G, Melchiorri C, Siciliano B (2011) Experimental evaluation of postural synergies during reach to grasp with the UB Hand IV. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, San Francisco, CA, USA

  • Fougner A, Scheme E, Chan AD, Englehart K, Stavdahl O (2011) Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans Neural Syst Rehabil Eng 19:644–651. https://doi.org/10.1109/tnsre.2011.2163529

    Article  PubMed  Google Scholar 

  • Fougner A, Stavdahl O, Kyberd PJ, Losier YG, Parker PA (2012) Control of upper limb prostheses: terminology and proportional myoelectric control: a review. IEEE Trans Neural Syst Rehabil Eng 20:663–677. https://doi.org/10.1109/tnsre.2012.2196711

    Article  PubMed  Google Scholar 

  • Geng YJ, Zhou P, Li GL (2012) Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. J Neuroeng Rehabil 9:74. https://doi.org/10.1186/1743-0003-9-74

    Article  PubMed  PubMed Central  Google Scholar 

  • Geng W, Du Y, Jin W, Wei W, Hu Y, Li J (2016) Gesture recognition by instantaneous surface EMG images. Sci Rep 6:36571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahne JM, BieBmann F, Jiang N et al (2014) Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control. IEEE Trans Neural Syst Rehabil Eng 22:269–279. https://doi.org/10.1109/TNSRE.2014.2305520

    Article  CAS  PubMed  Google Scholar 

  • Hargrove L, Losier Y, Lock B, Englehart K, Hudgins B (2007a) A real-time pattern recognition based myoelectric control usability study implemented in a virtual environment. In: Engineering in medicine and biology society, 2007. EMBS 2007. 29th annual international conference of the IEEE, pp 4842–4845

  • Hargrove LJ, Englehart K, Hudgins B (2007b) A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans Biomed Eng 54:847–853

    Article  PubMed  Google Scholar 

  • Hargrove L, Englehart K, Hudgins B (2008) A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomed Signal Process Control 3:175–180. https://doi.org/10.1016/j.bspc.2007.11.005

    Article  Google Scholar 

  • He J, Zhang D, Jiang N, Sheng X, Farina D, Zhu X (2015a) User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control. J Neural Eng 12:046005. https://doi.org/10.1088/1741-2560/12/4/046005

    Article  PubMed  Google Scholar 

  • He J, Zhang D, Sheng X, Li S, Zhu X (2015b) Invariant Surface EMG feature against varying contraction level for myoelectric control based on muscle coordination. IEEE J Biomed Health Inform 19:874–882. https://doi.org/10.1109/jbhi.2014.2330356

    Article  PubMed  Google Scholar 

  • Hotson G, McMullen DP, Fifer MS et al (2016) Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J Neural Eng 13:026017

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Zhang F, Sun YL, He HB (2010) Design of a robust EMG sensing interface for pattern classification. J Neural Eng 7 https://doi.org/10.1088/1741-2560/7/5/056005

  • Huang Q, Yang D, Jiang L, Zhang H, Liu H, Kotani K (2017) A Novel unsupervised adaptive learning method for long-term electromyography (EMG) pattern recognition. Sensors 17:1370

    Article  Google Scholar 

  • Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40:82–94

    Article  CAS  PubMed  Google Scholar 

  • Ison M, Artemiadis P (2014) The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng 11:051001. https://doi.org/10.1088/1741-2560/11/5/051001

    Article  PubMed  Google Scholar 

  • Jebsen RH, Taylor N, Trieschmann R, Trotter M, Howard L (1969) An objective and standardized test of hand function. Arch Phys Med Rehabil 50(6):p 311, 50:311–319

    CAS  PubMed  Google Scholar 

  • Jenkins OC, Mataric MJ (2002) Deriving action and behavior primitives from human motion data. In: IEEE/RSJ international conference on intelligent robots and systems, vol 3, pp 2551–2556 vol.2553

  • Jiang N, Muceli S, Graimann B, Farina D (2013) Effect of arm position on the prediction of kinematics from EMG in amputees. Med Biol Eng Compu 51:143–151. https://doi.org/10.1007/s11517-012-0979-4

    Article  Google Scholar 

  • Jiang L, Huang Q, Zhao J, Yang D, Fan S, Liu H (2014) Noise cancellation for electrotactile sensory feedback of myoelectric forearm prostheses. In: 2014 IEEE international conference on information and automation, ICIA 2014, July 28, 2014–July 30, 2014. Institute of Electrical and Electronics Engineers Inc., Hailar, Hulunbuir, China, pp 1066–1071

    Google Scholar 

  • Ju Z, Liu H (2014) Human hand motion analysis with multisensory information. IEEE/ASME Trans Mechatron 19:456–466

    Article  Google Scholar 

  • Kamavuako E, Scheme E, Englehart K (2014) Combined surface and intramuscular EMG for improved real-time myoelectric control performance. Biomed Signal Process Control 10:102–107

    Article  Google Scholar 

  • Kawano S, Okumura D, Tamura H, Tanaka H, Tanno K (2009) Online learning method using support vector machine for surface-electromyogram recognition. Artif Life Robotics 13:483–487

    Article  Google Scholar 

  • Kent BA, Karnati N, Engeberg ED (2014) Electromyogram synergy control of a dexterous artificial hand to unscrew and screw objects. J Neuroeng Rehabil 11:41. https://doi.org/10.1186/1743-0003-11-41

    Article  PubMed  PubMed Central  Google Scholar 

  • Khushaba RN, Takruri M, Miro JV, Kodagoda S (2014) Toward limb position invariant myoelectric pattern recognition using time-dependent spectral features. Neural Netw 55:42–58

    Article  PubMed  Google Scholar 

  • Khushaba RN, Al-Timemy A, Kodagoda S, Nazarpour K (2016) Combined influence of forearm orientation and muscular contraction on EMG pattern recognition. Expert Syst Appl 61:154–161. https://doi.org/10.1016/j.eswa.2016.05.031

    Article  Google Scholar 

  • Kuiken TA, Miller LA, Lipschutz RD et al (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369:371–380

    Article  PubMed  Google Scholar 

  • Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA J Am Med Assoc 301:619–628

    Article  CAS  Google Scholar 

  • Kuiken TA, Miller LA, Turner K, Hargrove LJ (2016) A comparison of pattern recognition control and direct control of a multiple degree-of-freedom transradial prosthesis. IEEE J Transl Eng Health Med 4:1–8. https://doi.org/10.1109/JTEHM.2016.2616123

    Article  Google Scholar 

  • Kyberd PJ (2011) The influence of control format and hand design in single axis myoelectric hands: assessment of functionality of prosthetic hands using the Southampton Hand Assessment Procedure. Prosthet Orthot Int 35:285–293. https://doi.org/10.1177/0309364611418554

    Article  PubMed  Google Scholar 

  • Kyberd PJM, Murgia A, Gasson M, Tjerks T, Cheryl M, Chappell PH, Warwick K, Lawson SEM, Barnhill T (2009) Case studies to demonstrate the range of applications of the Southampton Hand Assessment Procedure. Br J Occup Therapy 72:212–218

    Article  Google Scholar 

  • Lacquaniti F, Soechting JF (1982) Coordination of arm and wrist motion during a reaching task. J Neurosci 2:399–408

    Article  CAS  PubMed  Google Scholar 

  • Lewis S, Russold MF, Dietl H, Eugenijus K (2012) User demands for sensory feedback in upper extremity prostheses. In: 2012 IEEE international symposium on medical measurements and applications proceedings. IEEE, Budapest, Hungary, pp 1–4

  • Li Z, Canny JF, Sastry SS (1989) On motion planning for dexterous manipulation. i. the problem formulation. In: Robotics and automation, 1989. Proceedings., 1989 IEEE International Conference on. IEEE, pp 775–780

  • Li G, Schultz AE, Kuiken TA (2010) Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. IEEE Trans Neural Syst Rehabil Eng 18:185–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Liarokapis MV, Artemiadis PK, Katsiaris PT, Kyriakopoulos KJ (2012) Learning human reach-to-grasp strategies: Towards EMG-based control of robotic arm-hand systems. In: IEEE international conference on robotics and automation, pp 2287–2292

  • Light C, Chappell P, Kyberd P, Ellis B (1999) A critical review of functionality assessment in natural and prosthetic hands. Br J Occup Therapy 62:7–12

    Article  Google Scholar 

  • Light CM, Chappell PH, Kyberd PJ (2002) Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil 83:776–783

    Article  PubMed  Google Scholar 

  • Liu J, Zhang D, Sheng X, Zhu X (2014) Quantification and solutions of arm movements effect on sEMG pattern recognition. Biomed Signal Process Control 13:189–197. https://doi.org/10.1016/j.bspc.2014.05.001

    Article  Google Scholar 

  • Liu J, Sheng X, Zhang D, Jiang N, Zhu X (2015) Towards zero re-training for myoelectric control based on common model component analysis. IEEE Trans Neural Syst Rehabil Eng 24:444–454. https://doi.org/10.1109/TNSRE.2015.2420654

    Article  PubMed  Google Scholar 

  • Liu H, Yang D, Fan S, Cai H (2016a) On the development of intrinsically-actuated, multisensory dexterous robotic hands. Robomech J 3:4. https://doi.org/10.1186/s40648-016-0043-5

    Article  Google Scholar 

  • Liu J, Sheng X, Zhang D, He J, Zhu X (2016b) Reduced daily recalibration of myoelectric prosthesis classifiers based on domain adaptation. IEEE J Biomed Health Inf 20:166–176

    Article  Google Scholar 

  • Liu Y, Jiang L, Yang D, Liu H (2016c) Analysis of hand and wrist postural synergies in tolerance grasping of various objects. Plos ONE 11:e0161772. https://doi.org/10.1371/journal.pone.0161772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorrain T, Jiang N, Farina D (2011) Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses. J Neuroeng Rehabil 8:1:8

    Article  Google Scholar 

  • Ma J, Thakor NV, Matsuno F (2015) Hand and wrist movement control of myoelectric prosthesis based on synergy. IEEE Trans Hum Mach Syst 45:74–83

    Google Scholar 

  • MacKenzie IS (1992) Fitts’ law as a research and design tool in human-computer interaction. Hum Comput Interact 7:91–139

    Article  Google Scholar 

  • Marco S, Gabriel BB, Henrik J (2013) Neural bases of hand synergies. Front Comput Neurosci 7:23

    Google Scholar 

  • McMullen DP, Hotson G, Katyal KD et al (2014) Demonstration of a semi-autonomous hybrid brain–machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic. IEEE Trans Neural Syst Rehabil Eng 22:784–796

    Article  PubMed  Google Scholar 

  • Merad M, Montalivet Ed, Roby-Brami A, Jarrasse N (2016) Intuitive prosthetic control using upper limb inter-joint coordinations and IMU-based shoulder angles measurement: a pilot study. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, Vancouver, Canada, pp 5677–5682

  • Merletti R, Holobar A, Farina D (2008) Analysis of motor units with high-density surface electromyography. J Electromyogr Kinesiol 18:879–890

    Article  PubMed  Google Scholar 

  • Merletti R, Aventaggiato M, Botter A, Holobar A, Marateb H, Vieira TM (2010a) Advances in surface EMG: recent progress in detection and processing techniques. Crit Rev Biomed Eng 38:305–345

    Article  PubMed  Google Scholar 

  • Merletti R, Botter A, Cescon C, Minetto M, Vieira T (2010b) Advances in surface EMG: recent progress in clinical research applications. Crit Rev Biomed Eng 38:347–379

    Article  PubMed  Google Scholar 

  • Montagnani F, Controzzi M, Cipriani C (2015) Is it finger or wrist dexterity that is missing in current hand prosthesese. IEEE Trans Neural Syst Rehabil Eng 23:600–609

    Article  PubMed  Google Scholar 

  • Montagnani F, Controzzi M, Cipriani C (2016) Independent long fingers are not essential for a grasping hand. Sci Rep 6:35545. https://doi.org/10.1038/srep35545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napier JR (1956) The prehensile movements of the human. J Bone Jt Surg 38:902–913

    Article  Google Scholar 

  • Ning J, Dosen S, Muller KR, Farina D (2012) Myoelectric control of artificial limbs: is there a need to change focus? IEEE Signal Process Mag 29:148–152. https://doi.org/10.1109/msp.2012.2203480

    Article  Google Scholar 

  • Oskoei MA, Hu H (2007) Myoelectric control systems—a survey. Biomed Signal Process Control 2:275–294

    Article  Google Scholar 

  • Oskoei MA, Hu H (2009) Adaptive myoelectric human-machine interface for video games. In: Proceedings of the 2009 IEEE international conference on mechatronics and automation. IEEE, Changchun, China, pp 1015–1020

  • Oskoei MA, Huosheng H (2008) Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans Biomed Eng 55:1956–1965

    Article  PubMed  Google Scholar 

  • Pan L, Zhang D, Jiang N, Sheng X, Zhu X (2015) Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns. J Neuroeng Rehabil 12:1

    Article  CAS  Google Scholar 

  • Peerdeman B, Boere D, Witteveen H et al (2011) Myoelectric forearm prostheses: state of the art from a user-centered perspective. J Rehabil Res Dev 48:719–737. https://doi.org/10.1682/jrrd.2010.08.0161

    Article  PubMed  Google Scholar 

  • Pilarski PM, Dawson MR, Degris T, Carey JP, Chan KM, Hebert JS, Sutton RS (2013) Adaptive artificial limbs: a real-time approach to prediction and anticipation. IEEE Robot Autom Mag 20:53–64

    Article  Google Scholar 

  • Pons JL, Ceres∗ R, Rocon∗ E et al (2005) Virtual reality training and EMG control of the MANUS hand prosthesis. Robotica 23:311–317 https://doi.org/10.1017/S026357470400133X

    Article  Google Scholar 

  • Rombokas E, Malhotra M, Theodorou EA, Todorov E, Matsuoka Y (2013) Reinforcement learning and synergistic control of the ACT hand. IEEE/ASME Trans Mech 18:569–577. https://doi.org/10.1109/TMECH.2012.2219880

    Article  Google Scholar 

  • Sahu OP, Balabantaray B, Mishra N, Biswal BB (2017) An integrated approach of sensors to detect grasping point for unstructured 3-D parts. Int J Eng Technol 9:84

    Article  Google Scholar 

  • Saxena A, Driemeyer J, Ng AY (2008) Robotic grasping of novel objects using vision. Int J Robot Res 27:157–173

    Article  Google Scholar 

  • Scheme E, Englehart K (2011) Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev 48:643–660. https://doi.org/10.1682/jrrd.2010.09.0177

    Article  PubMed  Google Scholar 

  • Scheme E, Englehart K (2013) Training strategies for mitigating the effect of proportional control on classification in pattern recognition based myoelectric control. J Prosthet Orthot 25:76–83. https://doi.org/10.1097/JPO.0b013e318289950b

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheme EJ, Englehart KB, Hudgins BS (2011) Selective classification for improved robustness of myoelectric control under nonideal conditions. IEEE Trans Biomed Eng 58:1698–1705

    Article  PubMed  Google Scholar 

  • Scheme E, Hudgins B, Englehart K (2013) Confidence based rejection for improved pattern recognition myoelectric control. IEEE Trans Biomed Eng 60:1563–1570. https://doi.org/10.1109/tbme.2013.2238939

    Article  PubMed  Google Scholar 

  • Sensinger JW, Lock BA, Kuiken TA (2009) Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans Neural Syst Rehabil Eng 17:270–278. https://doi.org/10.1109/tnsre.2009.2023282

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin S, Tafreshi R, Langari R (2016) Myoelectric pattern recognition using dynamic motions with limb position changes. In: 2016 Conference AC (ACC). IEEE, pp 4901–4906

  • Smith HB (1973) Smith hand function evaluation. Am J Occup Therapy 27:244

    CAS  Google Scholar 

  • Smith LH, Hargrove LJ (2013) Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 4223–4226

  • Smith LH, Hargrove LJ, Lock BA, Kuiken TA (2011) Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay. IEEE Trans Neural Syst Rehabil Eng 19:186–192. https://doi.org/10.1109/TNSRE.2010.2100828

    Article  PubMed  Google Scholar 

  • Smith LH, Kuiken TA, Hargrove LJ (2014) Real-time simultaneous and proportional myoelectric control using intramuscular EMG. J Neural Eng 11:066013

    Article  PubMed  PubMed Central  Google Scholar 

  • Stango A, Negro F, Farina D (2015) Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol. IEEE Trans Neural Syst Rehabil Eng 23:189–198

    Article  PubMed  Google Scholar 

  • Tax D, Duin R (1999) Data domain description using support vectors. In: Verleysen M (ed) Procedings of European symposium artificial neural networks. D. Facto, Brussel, pp 251–256

    Google Scholar 

  • Tenore FVG, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV (2009) Decoding of individuated finger movements using surface electromyography. IEEE Trans Biomed Eng 56:1427–1434

    Article  PubMed  Google Scholar 

  • Tommasi T, Orabona F, Castellini C, Caputo B (2013) Improving control of dexterous hand prostheses using adaptive learning. IEEE Trans Robot 29:207–219

    Article  Google Scholar 

  • Trachtenberg MS, Singhal G, Kaliki R, Smith RJ, Thakor NV (2011) Radio frequency identification—an innovative solution to guide dexterous prosthetic hands. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, pp 3511–3514

  • Tucker M, Ellis R (2001) The potentiation of grasp types during visual object categorization. Vis Cognit 8:769–800

    Article  Google Scholar 

  • Wentink EC, Beijen SI, Hermens HJ, Rietman JS, Veltink PH (2013) Intention detection of gait initiation using EMG and kinematic data. Gait Posture 37:223–228 doi. https://doi.org/10.1016/j.gaitpost.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  • Wimbock T, Jahn B, Hirzinger G (2011) Synergy level impedance control for multifingered hands. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ international conference on, San Francisco, CA, USA, pp 973–979

  • Wurth SM, Hargrove LJ (2014) A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts’ law style assessment procedure. J Neuroeng Rehabil 11:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu K, Du Y, Liu H, Sheng X, Zhu X (2013) Mechanical implementation of postural synergies of an underactuated prosthetic hand. In: ICIRA

  • Yang D, Zhao J, Gu Y et al (2009) An anthropomorphic robot hand developed based on underactuated mechanism and controlled by EMG signals. J Bionic Eng 6:255–263

    Article  Google Scholar 

  • Yang D, Zhao J, Jiang L, Liu H (2012) Dynamic hand motion recognition based on transient and steady-state EMG signals. Int J Humanoid Rob 9:11250007

    Google Scholar 

  • Yang D, Jiang L, Liu R, Liu H (2013) Adaptive learning of multi-finger motion recognition based on support vector machine. In: 2013 IEEE international conference on robotics and biomimetics, ROBIO 2013, December 12, 2013 - December 14, 2013. IEEE Computer Society, Shenzhen, China, pp 2231–2238

  • Yang D, Gu Y, Liu R, Liu H (2014a) Dexterous motion recognition for myoelectric control of multifunctional transradial prostheses. Adv Robot 28:1533–1543. https://doi.org/10.1080/01691864.2014.957723

    Article  Google Scholar 

  • Yang D, Jiang L, Huang Q, Liu R, Liu H (2014b) Experimental study of an EMG-controlled 5-DOF anthropomorphic prosthetic hand for motion restoration. J Intell Rob Syst 76:427–441. https://doi.org/10.1007/s10846-014-0037-6

    Article  Google Scholar 

  • Yang D, Gu Y, Jiang L, Osborn L, Liu H (2017a) Dynamic training protocol improves the robustness of PR-based myoelectric control. Biomed Signal Process Control 31:249–256. https://doi.org/10.1016/j.bspc.2016.08.017

    Article  Google Scholar 

  • Yang D, Yang W, Huang Q, Liu H (2017b) Classification of multiple finger motions during dynamic upper limb movements. IEEE J Biomed Health Inform 21:134–141. https://doi.org/10.1109/JBHI.2015.2490718

    Article  PubMed  Google Scholar 

  • Yang W, Yang D, Liu Y, Liu H (2018) A 3-DOF hemi-constrained wrist motion/force detection device for deploying simultaneous myoelectric control. Med Biol Eng Compu 56:1669–1681

    Article  Google Scholar 

  • Yinfeng F, Honghai L (2014) Robust sEMG electrodes configuration for pattern recognition based prosthesis control. In: 2014 IEEE international conference on systems, man and cybernetics (SMC). pp 2210–2215

  • Young AJ, Hargrove LJ, Kuiken TA (2011) The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift. IEEE Trans Biomed Eng 58:2537–2544

    Article  PubMed  PubMed Central  Google Scholar 

  • Young AJ, Hargrove LJ, Kuiken TA (2012) Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration. IEEE Trans Biomed Eng 59:645–652. https://doi.org/10.1109/tbme.2011.2177662

    Article  PubMed  Google Scholar 

  • Zecca M, Micera S, Carrozza MC, Dario P (2002) Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 30:459–485

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhou P (2012) High-density myoelectric pattern recognition toward improved stroke rehabilitation. IEEE Trans Biomed Eng 59:1649–1657. https://doi.org/10.1109/tbme.2012.2191551

    Article  PubMed  Google Scholar 

  • Zhang Y, Wang Z, Zhang Z, Fang Y, Liu H (2016) Comparison of online adaptive learning algorithms for myoelectric hand control. In: 2016 9th international conference on human system interactions (HSI). IEEE, pp 69–75

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (NO. 51675123, NO.51521003) and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Gu, Y., Thakor, N.V. et al. Improving the functionality, robustness, and adaptability of myoelectric control for dexterous motion restoration. Exp Brain Res 237, 291–311 (2019). https://doi.org/10.1007/s00221-018-5441-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5441-x

Keywords

Navigation