Skip to main content
Log in

Effects of longer vs. shorter timed movement sequences on alpha motor inhibition when combining contractions and relaxations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Alpha inhibitory processes reflect motor stimuli by either increasing or decreasing amplitude (i.e., power). However, the functional role and interplay of event-related alpha oscillations remains a regulatory domain that has not been sufficiently addressed, particularly with respect to different muscle activation types and durations in consecutive movement (i.e., motor) tasks. The aim of this study was to investigate alpha-band activity (7–13 Hz) in longer vs. shorter timed isometric muscle activations at distinct torques (20% and 40% of maximum voluntary contraction, MVC) when combined in one motor task sequence. In a randomized and controlled design, 18 healthy males volunteered to perform 40 longer (i.e., 6 s) and 40 shorter (i.e., 3 s) motor task sequences, each comprising isometric contractions (i.e., palmar flexion) from baseline to 20% and 40% MVC subsequent to relaxations from 40% and 20% MVC to baseline. Continuous, synchronized EEG, EMG and torque recordings served to determine alpha-band activity over task-relevant motor areas at distinct torques. Main findings revealed increases in alpha activity during subsequent progressive muscle relaxation (from 20% MVC in long and short: p < .001; from 40% MVC in short: p < .05), whereas modulations in relevant motor areas were not significant (p = .84). It may be suggested that an active task-relevant inhibitory process indicates motor task sequence-related relaxation mirrored by an increasing alpha activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alegre M, Labarga A, Gurtubay IG, Iriarte J, Malanda A, Artieda J (2003) Movement-related changes in cortical oscillatory activity in ballistic, sustained and negative movements. Exp Brain Res 148(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Babiloni C, Del Percio C, Iacoboni M, Infarinato F, Lizio R, Marzano N, Eusebi F (2008) Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms. J Physiol 586(1):131–139

    Article  CAS  PubMed  Google Scholar 

  • Brinkofski F, Fink GR, Geyer S, Buccino G, Gruber O, Shah NJ, Taylor JG, Seitz RJ, Zilles K, Freund HJ (2002) Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention and action. J Neurophysiol 88(1):514–519

    Article  Google Scholar 

  • Buccolieri A, Abbruzzese G, Rothwell JC (2004) Relaxation from a voluntary contraction is preceded by increased excitability of motor cortical inhibitory circuits. J Physiol 558(Pt 2):685–695. https://doi.org/10.1113/jphysiol.2004.064774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheney PD, Fetz EE, Palmer SS (1985) Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. J Neurophysiol 53(3):805–820

    Article  CAS  PubMed  Google Scholar 

  • Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP (1998) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain J Neurol 121(Pt 12):S2271–2299

    Article  Google Scholar 

  • Flanders M (2011) What is the biological basis of sensorimotor integration? Biol Cybern 104(1–2):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cognit Sci 9(10):474–480

    Article  Google Scholar 

  • Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55(4):468–484

    Article  CAS  PubMed  Google Scholar 

  • Guger C, Domej W, Lindner G, Edlinger G (2005) Effects of cable car ascent to 2700 meters on mean EEG frequency and event-related desynchronization (ERD). Wien Med Wochenschr 155(7–8):143–148

    Article  PubMed  Google Scholar 

  • Handel BF, Haarmeier T, Jensen O (2011) Alpha oscillations correlate with the successful inhibition of unattended stimuli. J Cognit Neurosci 23(9):2494–2502

    Article  Google Scholar 

  • Hari R, Salmelin R (1997) Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 20(1):44–49

    Article  CAS  PubMed  Google Scholar 

  • Hermens H, Freriks B, Marletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hang G (1999) European recommendations for surface electromyography, vol 2. Roessingh Research and Development, AH Enschede

    Google Scholar 

  • Jankowska E, Padel Y, Tanaka R (1976) Disynaptic inhibition of spinal motoneurones from the motor cortex in the monkey. J Physiol 258(2):467–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasper H (1958) Progress and problems in brain research. J Mount Sinai Hosp N Y 25(3):244–253

    CAS  Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato K, Muraoka T, Mizuguchi N, Nakagawa K, Nakata H, Kanosue K (2016) Muscle relaxation of the foot reduces corticospinal excitability of hand muscles and enhances intracortical inhibition. Front Hum Neurosci 10:218

    PubMed  PubMed Central  Google Scholar 

  • Klimesch W (2012) alpha-band oscillations, attention, and controlled access to stored information. Trends Cognit Sci 16(12):606–617

    Article  Google Scholar 

  • Klimesch W, Freunberger R, Sauseng P (2010) Oscillatory mechanisms of process binding in memory. Neurosci Biobehav Rev 34(7):1002–1014

    Article  PubMed  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53(1):63–88

    Article  PubMed  Google Scholar 

  • Li S (2013) Analysis of increasing and decreasing isometric finger force generation and the possible role of the corticospinal system in this process. Mot Control 17(3):221–237

    Article  Google Scholar 

  • Neuper C, Wortz M, Pfurtscheller G (2006) ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 159:211–222

    Article  PubMed  Google Scholar 

  • Pfurtscheller G (2006) The cortical activation model (CAM). In: Neuper C, Klimesch W Event-related dynamics of brain oscillations (1. Aufl. Ausg., Bd. 159, S. 19–27). s.l.: Elsevier Textbooks

  • Pfurtscheller G, Aranibar A (1979) Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol 46(2):138–146

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization. Clin Neurophysiol 110(11):1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Stancak A, Neuper C (1996) Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24(1–2):39–46

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Zalaudek K, Neuper C (1998) Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr Clin Neurophysiol 109(2):154–160

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C, Pichler-Zalaudek K, Edlinger G, Lopes da Silva FH (2000) Do brain oscillations of different frequencies indicate interaction between cortical areas in humans? Neurosci Lett 286(1):66–68

    Article  CAS  PubMed  Google Scholar 

  • Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21(8):2699–2710

    Article  CAS  PubMed  Google Scholar 

  • Rau C, Plewnia C, Hummel F, Gerloff C (2003) Event-related desynchronization and excitability of the ipsilateral motor cortex during simple self-paced finger movements. Clin Neurophysiol 114(10):S. 1819–1826

    Article  PubMed  Google Scholar 

  • Rihs TA, Michel CM, Thut G (2007) Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. Eur J Neurosci 25(2):603–610

    Article  PubMed  Google Scholar 

  • Schmidt EM, McIntosh JS (1990) Microstimulation mapping of precentral cortex during trained movements. J Neurophysiol 64(6):1668–1682

    Article  CAS  PubMed  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Jones PS, Carpenter TA, Baron JC (2008) Mapping the involvement of BA 4a and 4p during Motor Imagery. Neuroimage 41(1):92–99

    Article  PubMed  Google Scholar 

  • Spraker MB, Corcos DM, Vaillancourt DE (2009) Cortical and subcortical mechanisms for precisely controlled force generation and force relaxation. Cerebral Cortex (New York, NY) 19(11):2640–2650. https://doi.org/10.1093/cercor/bhp015

    Article  Google Scholar 

  • Steriade M (1988) New vistas on the morphology, chemical transmitters and physiological actions of the ascending brainstem reticular system. Arch Ital Biol 126(4):225–238

    CAS  PubMed  Google Scholar 

  • Supp GG, Siegel M, Hipp JF, Engel AK (2011) Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr Biol CB 21(23):1988–1993

    Article  CAS  PubMed  Google Scholar 

  • Terada K, Ikeda A, Nagamine T, Shibasaki H (1995) Movement-related cortical potentials associated with voluntary muscle relaxation. Electroencephalogr Clin Neurophysiol 95(5):335–345

    Article  CAS  PubMed  Google Scholar 

  • Toma K, Honda M, Hanakawa T, Okada T, Fukuyama H, Ikeda A, Shibasaki H (1999) Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci 19(9):3527–3534

    Article  CAS  PubMed  Google Scholar 

  • van Gerven M, Jensen O (2009) Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces. J Neurosci Methods 179(1):78–84

    Article  PubMed  Google Scholar 

  • Vogt T, Kato K, Flüthmann N, Bloch O, Nakata H, Kanosue K (2018) Performance control in one consecutive motor task sequence—approaching central neuronal motor behaviour preceding isometric contraction onsets and relaxation offsets at lower distinct torques. J Musculoskelet Neuronal Interact 18(1):1–8

    PubMed  PubMed Central  Google Scholar 

  • Woertz M, Pfurtscheller G, Klimesch W (2004) Alpha power dependent light stimulation: dynamics of event-related (de) synchronization in human electroencephalogram. Cognit Brain Res 20:256–260

    Article  Google Scholar 

  • Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20(6):S. RC63

    Article  PubMed  Google Scholar 

  • Zanto TP, Rubens MT, Thangavel A, Gazzaley A (2011) Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat Neurosci 14(5):656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere gratitude to Stefan Schneider for providing research equipment during data collection, and to all those who spend their valuable time participating in the study. The study was funded by an international grant of the German Academic Exchange Service (DAAD project no. 57320531) awarded to Tobias Vogt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Flüthmann.

Ethics declarations

Conflict of interest

All authors declare no actual or potential conflict of interest, including any financial, personal or other relationships with other people or organisations that could inappropriately influence, or be perceived to influence, the publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flüthmann, N., Kato, K., Bloch, O. et al. Effects of longer vs. shorter timed movement sequences on alpha motor inhibition when combining contractions and relaxations. Exp Brain Res 237, 101–109 (2019). https://doi.org/10.1007/s00221-018-5401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5401-5

Keywords

Navigation