Skip to main content
Log in

Balance in multiple sclerosis: relationship to central brain regions

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Dizziness, postural instability, and ataxia are among the most debilitating symptoms of multiple sclerosis (MS), reflecting, in large part, dysfunctional integration of visual, somatosensory, and vestibular sensory cues. However, the role of MS-related supratentorial lesions in producing such symptoms is poorly understood. In this study, motor control test (MCT) and dynamic sensory organization test (SOT) scores of 58 MS patients were compared to those of 72 healthy controls; correlations were determined between the MS scores of 49 patients and lesion volumes within 26 brain regions. Depending upon platform excursion direction and magnitude, MCT latencies, which were longer in MS patients than controls (p < 0.0001), were correlated with lesion volumes in the cortex, medial frontal lobes, temporal lobes, and parietal opercula (r’s ranging from 0.20 to 0.39). SOT test scores were also impacted by MS and correlated with lesions in these same brain regions as well as within the superior frontal lobe (r’s ranging from − 0.28 to − 0.40). The strongest and most consistent correlations occurred for the most challenging tasks in which incongruent visual and proprioceptive feedback were given. This study demonstrates that supratentorial lesion volumes are associated with quantitative balance measures in MS, in accord with the concept that balance relies upon highly convergent and multimodal neural pathways involving the skin, muscles, joints, eyes, and vestibular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alpini D, Berardino FD, Mattei V, Caputo D, Schalek P, Cesarani A (2012) Characteristics of multiple sclerosis patient stance control disorders, measured by means of posturography and related to brainstem lesions. Audiol Res 2:e9

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakshi R, Caruthers SD, Janardhan V, Wasay M (2000) Intraventricular CSF pulsation artifact on fast fluid-attenuated inversion-recovery MR images: analysis of 100 consecutive normal studies. AJNR Am J Neuroradiol 21:503–508

    CAS  PubMed  Google Scholar 

  • Bazin PL, Cuzzocreo JL, Yassa MA, Gandler W, McAuliffe MJ, Bassett SS, Pham DL (2007) Volumetric neuroimage analysis extensions for the MIPAV software package. J Neurosci Methods 165:111–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernstein J, Burkard R (2009) Test order effects of computerized dynamic posturography and calorics. Am J Audiol 18:34–44

    Article  PubMed  Google Scholar 

  • Black FO (2001) What can posturography tell us about vestibular function? Ann N Y Acad Sci 942:446–464

    Article  CAS  PubMed  Google Scholar 

  • Bouafia A, Golmard JL, Thuries V, Sazdovitch V, Hauw JJ, Fontaine B, Seilhean D (2014) Axonal expression of sodium channels and neuropathology of the plaques in multiple sclerosis. Neuropathol Appl Neurobiol 40:579–590

    Article  CAS  PubMed  Google Scholar 

  • Cameron MH, Horak FB, Herndon RR, Bourdette D (2008) Imbalance in multiple sclerosis: a result of slowed spinal somatosensory conduction. Somatosens Mot Res 25:113–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Charil A, Zijdenbos AP, Taylor J, Boelman C, Worsley KJ, Evans AC, Dagher A (2003) Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: application to 452 patient data sets. Neuroimage 19:532–544

    Article  PubMed  Google Scholar 

  • Damasceno A, Damasceno BP, Cendes F (2016) No evidence of disease activity in multiple sclerosis: Implications on cognition and brain atrophy. Mult Scler 22:64–72

    Article  CAS  PubMed  Google Scholar 

  • Doty RL, Tourbier I, Davis S, Rotz J, Cuzzocreo JL, Treem J, Shephard N, Pham DL (2012) Pure-tone auditory thresholds are not chronically elevated in multiple sclerosis. Behav Neurosci 126:314–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Doty RL, Tourbier IA, Pham DL, Cuzzocreo JL, Udupa JK, Karacali B, Beals E, Fabius L, Leon-Sarmiento FE, Moonis G, Kim T, Mihama T, Geckle RJ, Yousem DM (2016) Taste dysfunction in multiple sclerosis. J Neurol 263:677–688

    Article  PubMed  PubMed Central  Google Scholar 

  • Feise RJ (2002) Do multiple outcome measures require p-value adjustment? BMC Med Res Methodol 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Filippi M, Rocca MA (2005) MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol 252(Suppl 5):v16–v24

    Article  PubMed  Google Scholar 

  • Gasperini C, Horsfield MA, Thorpe JW, Kidd D, Barker GJ, Tofts PS, MacManus DG, Thompson AJ, Miller DH, McDonald WI (1996) Macroscopic and microscopic assessments of disease burden by MRI in multiple sclerosis: relationship to clinical parameters. J Magn Reson Imaging 6:580–584

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi R, Narayanan S, Banwell B, Sled JG, Shroff M, Arnold DL (2014) Quantitative determination of regional lesion volume and distribution in children and adults with relapsing-remitting multiple sclerosis. PLoS One 9:e85741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldszal AF, Davatzikos C, Pham DL, Yan MX, Bryan RN, Resnick SM (1998) An image-processing system for qualitative and quantitative volumetric analysis of brain images. J Comput Assist Tomogr 22:827–837

    Article  CAS  PubMed  Google Scholar 

  • Good KP, Tourbier IA, Moberg P, Cuzzocreo JL, Geckle RJ, Yousem DM, Pham DL, Doty RL (2017) Unilateral olfactory sensitivity in multiple sclerosis. Physiol Behav 168:24–30

    Article  CAS  PubMed  Google Scholar 

  • Hansson O, Guatteo E, Mercuri NB, Bernardi G, Li XJ, Castilho RF, Brundin P (2001) Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. Eur J Neurosci 14:1492–1504

    Article  CAS  PubMed  Google Scholar 

  • Hebert JR, Corboy JR (2013) The association between multiple sclerosis-related fatigue and balance as a function of central sensory integration. Gait Posture 38:37–42

    Article  CAS  PubMed  Google Scholar 

  • Herrera WG (1990) Vestibular and other balance disorders in multiple sclerosis. Differential diagnosis of disequilibrium and topognostic localization. [Review] [22 refs]. Neurol Clin 1990 May 8:407–420

    Article  CAS  PubMed  Google Scholar 

  • Horak FB, Diener HC (1994) Cerebellar control of postural scaling and central set in stance. J Neurophysiol 72:479–493

    Article  CAS  PubMed  Google Scholar 

  • Liaw MY, Chen CL, Pei YC, Leong CP, Lau YC (2009) Comparison of the static and dynamic balance performance in young, middle-aged, and elderly healthy people. Chang Gung Med J 32:297–304

    PubMed  Google Scholar 

  • Loevner LA, Grossman RI, Cohen JA, Lexa FJ, Kessler D, Kolson DL (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196:511–515

    Article  CAS  PubMed  Google Scholar 

  • Lund H, Jonsson A, Andresen J, Rostrup E, Paulson OB, Sorensen PS (2012) Cognitive deficits in multiple sclerosis: correlations with T2 changes in normal appearing brain tissue. Acta Neurol Scand 125:338–344

    Article  CAS  PubMed  Google Scholar 

  • Muller ML, Albin RL, Kotagal V, Koeppe RA, Scott PJ, Frey KA, Bohnen NI (2013) Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain 136:3282–3289

    Article  PubMed  PubMed Central  Google Scholar 

  • Nashner LM (1977) Fixed patterns of rapid postural responses among leg muscles during stance. Exp Brain Res 30:13–24

    Article  CAS  PubMed  Google Scholar 

  • Nashner LM, Peters JF (1990) Dynamic posturography in the diagnosis and management of dizziness and balance disorders. Neurol Clin 8:331–349

    Article  CAS  PubMed  Google Scholar 

  • Nashner LM, Woollacott M, Tuma G (1979) Organization of rapid responses to postural and locomotor-like perturbations of standing man. Exp Brain Res 36:463–476

    Article  CAS  PubMed  Google Scholar 

  • Nashner LM, Shupert CL, Horak FB, Black FO (1989) Organization of posture controls: an analysis of sensory and mechanical constraints. Prog Brain Res 80:411–418

    Article  CAS  PubMed  Google Scholar 

  • Pham DL (2001) Spatial models for fuzzy clustering. Comput Med Imaging Gr 84:285–297

    Google Scholar 

  • Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18:737–752

    Article  CAS  PubMed  Google Scholar 

  • Popescu BF, Pirko I, Lucchinetti CF (2013) Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn) 19:901–921

    Google Scholar 

  • Prosperini L, Kouleridou A, Petsas N, Leonardi L, Tona F, Pantano P, Pozzilli C (2011) The relationship between infratentorial lesions, balance deficit and accidental falls in multiple sclerosis. J Neurol Sci 304:55–60

    Article  PubMed  Google Scholar 

  • Prosperini L, Sbardella E, Raz E, Cercignani M, Tona F, Bozzali M, Petsas N, Pozzilli C, Pantano P (2013) Multiple sclerosis: white and gray matter damage associated with balance deficit detected at static posturography. Radiology 268:181–189

    Article  PubMed  Google Scholar 

  • Prosperini L, Petsas N, Raz E, Sbardella E, Tona F, Mancinelli CR, Pozzilli C, Pantano P (2014) Balance deficit with opened or closed eyes reveals involvement of different structures of the central nervous system in multiple sclerosis. Mult Scler 20:81–90

    Article  PubMed  Google Scholar 

  • Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, Matthews PM, Arnold DL (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123(Pt 11):2314–2320

    Article  PubMed  Google Scholar 

  • Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46

    Article  CAS  PubMed  Google Scholar 

  • Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Bruck W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18:1805–1811

    Article  CAS  PubMed  Google Scholar 

  • Shen D, Davatzikos C (2002) HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21:1421–1439

    Article  PubMed  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40:28–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommasin S, Gianni C, De GL, Pantano P (2017) Neuroimaging techniques to assess inflammation in Multiple Sclerosis. Neuroscience

  • Van Leemput K, Maes F, Vandermeulen D, Colchester A, Suetens P (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans Med Imaging 20:677–688

    Article  PubMed  Google Scholar 

  • Visser JE, Carpenter MG, van der Kooij H, Bloem BR (2008) The clinical utility of posturography. Clin Neurophysiol 119:2424–2436

    Article  PubMed  Google Scholar 

  • Wilkinson L (1990) SYSTAT: the system for statistics. SYSTAT, Inc., Evanston

    Google Scholar 

  • Xiao AY, Homma M, Wang XQ, Wang X, Yu SP (2001) Role of K(+) efflux in apoptosis induced by AMPA and kainate in mouse cortical neurons. Neuroscience 108:61–67

    Article  CAS  PubMed  Google Scholar 

  • Yildiz M, Tettenborn B, Radue EW, Bendfeldt K, Borgwardt S (2014) Association of cognitive impairment and lesion volumes in multiple sclerosis—a MRI study. Clin Neurol Neurosurg 127:54–58

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from the National Institute on Deafness and Other Communication Disorders (RO1 DC 02974), National Institute of Neurological Disorders and Stroke (RO1 NS0709060), National Multiple Sclerosis Society (RG-1507-05243), and the Department of Defense (USAMRAA W81XWH-09-1-0467). We thank Crystal Wylie and Fidas E. Leon-Sarmiento for their comments on a previous version of the manuscript and are grateful to Jennifer Rotz for testing a number of the subjects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Doty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doty, R.L., MacGillivray, M.R., Talab, H. et al. Balance in multiple sclerosis: relationship to central brain regions. Exp Brain Res 236, 2739–2750 (2018). https://doi.org/10.1007/s00221-018-5332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5332-1

Keywords

Navigation