Skip to main content
Log in

Postural time-to-contact as a precursor of visually induced motion sickness

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The postural instability theory of motion sickness predicts that subjective symptoms of motion sickness will be preceded by unstable control of posture. In previous studies, this prediction has been confirmed with measures of the spatial magnitude and the temporal dynamics of postural activity. In the present study, we examine whether precursors of visually induced motion sickness might exist in postural time-to-contact, a measure of postural activity that is related to the risk of falling. Standing participants were exposed to oscillating visual motion stimuli in a standard laboratory protocol. Both before and during exposure to visual motion stimuli, we monitored the kinematics of the body’s center of pressure. We predicted that postural activity would differ between participants who reported motion sickness and those who did not, and that these differences would exist before participants experienced subjective symptoms of motion sickness. During exposure to visual motion stimuli, the multifractality of sway differed between the Well and Sick groups. Postural time-to-contact differed between the Well and Sick groups during exposure to visual motion stimuli, but also before exposure to any motion stimuli. The results provide a qualitatively new type of support for the postural instability theory of motion sickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bardy BG, Marin L, Stoffregen TA, Bootsma RJ (1999) Postural coordination modes considered as emergent phenomena. J Exp Psychol Hum Percept Perform 25:1284–1301

    Article  PubMed  CAS  Google Scholar 

  • Bonnet CT, Faugloire EM, Riley MA, Bardy BG, Stoffregen TA (2006) Motion sickness preceded by unstable displacements of the center of pressure. Hum Mov Sci 25:800–820

    Article  PubMed  Google Scholar 

  • Chang C-H, Pan W-W, Tseng L-Y, Stoffregen TA (2012) Postural activity and motion sickness during video game play in children and adults. Exp Brain Res 217:299–309

    Article  PubMed  Google Scholar 

  • Chiari L, Rocchi L, Cappello A (2002) Stabilometric parameters are affected by anthropometry and foot placement. Clin Biomech 17:666–677

    Article  Google Scholar 

  • Dault MC, de Haart M, Geurts ACH, Arts IMP, Nienhuis B (2003) Effects of visual center of pressure feedback on postural control in young and elderly healthy adults and in stroke patients. Human Move Sci 22:221–236

    Article  Google Scholar 

  • Delignieres D, Ramdani S, Lemoine L, Torre K, Fortes M, Ninot G (2006) Fractal analysis for ‘short’ time series: a re-assessment of classical methods. J Math Psychol 50:525–544

    Article  Google Scholar 

  • Faugloire E, Bonnet CT, Riley MA, Bardy BG, Stoffregen TA (2007) Motion sickness, body movement, and claustrophobia during passive restraint. Exp Brain Rese 177:520–532

    Article  Google Scholar 

  • Freitas SMSF, Duarte M (2012) Joint coordination in young and older adults during quiet stance: effect of visual feedback of the center of pressure. Gait Posture 35:83–87

    Article  PubMed  Google Scholar 

  • Golding JF (2006) Predicting individual differences in motion sickness susceptibility by questionnaire. Pers Ind Diff 41:237–248

    Article  Google Scholar 

  • Haddad JM, Gagnon JL, Hasson CJ, Emmerik RE, A. V., Hamill J (2006) Evaluation of time-to-contact measures for assessing postural stability. J Appl Biomech 22:155–161

    Article  PubMed  Google Scholar 

  • Harm DL (1990). Physiology of motion sickness symptoms. In: Crampton GH (ed) Motion and space sickness. CRC Press, Boca Raton, pp 154–177

    Google Scholar 

  • Hasson CJ, Van Emmerik REA, Caldwell GE (2008) Predicting dynamic postural instability using center of mass time-to-contact information. J Biomech 41:2121–2129

    Article  PubMed  PubMed Central  Google Scholar 

  • Ihlen EA (2012) Introduction to multifractal detrended fluctuation analysis in matlab. Front Physiol 3:141. https://doi.org/10.3389/fphys.2012.00141

    Article  PubMed  PubMed Central  Google Scholar 

  • Ihlen EA, Vereijken B (2013) Multifractal formalisms of human behavior. Hum Move Sci 32:633–651. https://doi.org/10.1016/j.humov.2013.01.008

    Article  Google Scholar 

  • Ihlen EA, Skjaeret N, Vereijken B (2013) The influence of center-of-mass movements on the variation in the structure of human postural sway. J Biomech 46:484–490

    Article  PubMed  Google Scholar 

  • Kay BA, Saltzman EL, Kelso JAS (1991) Steady-state and perturbed rhythmical movements: a dynamical analysis. J Exp Psychol Hum Percept Perform 17:183–197

    Article  PubMed  CAS  Google Scholar 

  • Kelty-Stephen DG, Palatinus K, Saltzman E, Dixon JA (2013) A tutorial on multifractality, cascades, and interactivity for empirical times series in ecological science. Ecol Psychol 25:1–62

    Article  Google Scholar 

  • Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3:203–220. https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  • Koslucher FC, Haaland E, Stoffregen TA (2014) Body load and the postural precursors of motion sickness. Gait Posture 39:606–610

    Article  PubMed  Google Scholar 

  • Koslucher F, Haaland E, Malsch A, Webeler J, Stoffregen TA (2015) Sex differences in the incidence of motion sickness induced by linear visual oscillation. Aerosp Med Hum Perform 86:787–793. https://doi.org/10.3357/AMHP.4243.2015

    Article  PubMed  Google Scholar 

  • Koslucher F, Haaland E, Stoffregen TA (2016a) Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness. Exp Brain Res 234:313–322. https://doi.org/10.1007/s00221-015-4462-y

    Article  PubMed  Google Scholar 

  • Koslucher FC, Munafo J, Stoffregen TA (2016b) Postural sway in men and women during nauseogenic motion of the illuminated environment. Exp Brain Res 234:2709–2720. https://doi.org/10.1007/s00221-016-4675-8

    Article  PubMed  Google Scholar 

  • Laboissière R, Letievant J-C, Ionescu E, Barraud P-A, Mazzuca M, Cian C (2015) Relationship between spectral characteristics of spontaneous postural sway and motion sickness susceptibility. PLOS One 10:e0144466. https://doi.org/10.1371/journal.pone.0144466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau NML, Choy CST, Chow DHK (2015) Identifying multifractality structure on postural sway. J Ergon 5:2. https://doi.org/10.4172/2165-7556.1000137

    Article  Google Scholar 

  • Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud 1:87–95

    Google Scholar 

  • Lin D, Seol H, Nussbaum MA, Madigan ML (2008) Reliability of COP-based postural sway measures and age-related differences. Gait Posture 28:337–342. https://doi.org/10.1016/j.gaitpost.2008.01.005

    Article  PubMed  Google Scholar 

  • Munafo J, Curry C, Wade MG, Stoffregen TA (2016) The distance of visual targets affects the spatial magnitude and multifractal scaling of standing body sway in younger and older adults. Exp Brain Res 234:2721–2730

    Article  PubMed  Google Scholar 

  • Munafo J, Diedrick M, Stoffregen TA (2017) The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Exp Brain Res 235:889–901. https://doi.org/10.1007/s00221-016-4846-7

    Article  PubMed  Google Scholar 

  • Newell KM, Slobounov SM, Slobounova BS, Molenaar PCM (1997) Short-term non-stationarity and the development of postural control. Gait Posture 6:56–62

    Article  Google Scholar 

  • Palatinus Z, Kelty-Stephen D, Kinsella-Shaw J, Carello C, Turvey M (2014) Haptic perceptual intent in quiet standing affects multifractal scaling of postural fluctuations. J Exper Psychol Hum Percept Perform 40:1808–1818

    Article  Google Scholar 

  • Patton JL, Lee WA, Pai Y-C (2000) Relative stability improves with experience in a dynamic standing task. Exp Brain Res 135:117–126

    Article  PubMed  CAS  Google Scholar 

  • Pei L, Li H, Fu Y, Yang Y, Li J (2013) Influences of visual feedback indicator scales on human upright postural control. Trans Instit Measur Control 35:883–892

    Article  Google Scholar 

  • Prado JM, Stoffregen TA, Duarte M (2007) Postural sway during dual tasks in young and elderly adults. Gerontology 53:274–281

    Article  PubMed  Google Scholar 

  • Ramdani S, Seigle B, Lagarde J, Bouchara F, Bernard PL (2009) On the use of sample entropy to analyze human postural sway data. Med Eng Phys 31:1023–1031

    Article  PubMed  Google Scholar 

  • Riccio GE (1993) Information in movement variability about the qualitative dynamics of posture and orientation. In: Newell KM, Corcos DM (eds) Variability and motor control. Human Kinetics Publishers, Champaign, pp 317–357

    Google Scholar 

  • Riccio GE, Stoffregen TA (1988) Affordances as constraints on the control of stance. Hum Mov Sci 7:265–300

    Article  Google Scholar 

  • Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3:195–240. https://doi.org/10.1207/s15326969eco0303_2

    Article  Google Scholar 

  • Scarr G (2014) Biotensegrity: the structural basis of life. Handspring Publishing Limited, Pencaitland, Scotland

    Google Scholar 

  • Schmit JM, Regis DI, Riley MA (2005) Dynamic patterns of pos- tural sway in ballet dancers and track athletes. Exp Brain Res 163:370–378

    Article  PubMed  Google Scholar 

  • Shimizu Y, Thurner S, Ehrenberger K (2002) Multifractal spectra as a measure of complexity in human posture. Fractals 10:103–116. https://doi.org/10.1142/S0218348X02001130

    Article  Google Scholar 

  • Silva PL, Fonseca ST, Turvey MT (2010) Is tensegrity the functional architecture of the equilibrium point hypothesis? Mot Control 14:1–6

    Article  Google Scholar 

  • Slobounov SM, Slobounova ES, Newell KM (1997) Virtual time-to-collision and human postural control. J Mot Behav 29:263–281. https://doi.org/10.1080/00222899709600841

    Article  PubMed  CAS  Google Scholar 

  • Slobounov SM, Moss SA, Slovounova ES, Newell KM (1998) Aging and time to instability in posture. J Gerontol: Biol Sci 53A:B71–B78

    Article  Google Scholar 

  • Smart LJ, Stoffregen TA, Bardy BG (2002) Visually-induced motion sickness predicted by postural instability. Human Fact 44:451–465

    Article  Google Scholar 

  • Stanney K, Salvendy G, Deisinger J, DiZio P, Ellis S et al (1998) Aftereffects and sense of presence in virtual environments: Formulation of a research and development agenda. Report sponsored by the Life Sciences Division at NASA Headquarters. Int J Hum-Comput Interact 10:135–187

    Article  PubMed  CAS  Google Scholar 

  • Stergiou N, Decker LM (2011) Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum Mov Sci 30:869–888

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens SC, Parsons MG (2002) Effects of motion at sea on crew performance: a survey. Mar Technol 39:29–47

    Google Scholar 

  • Stoffregen TA, Smart LJ (1998) Postural instability precedes motion sickness. Brain Res Bull 47:437–448. https://doi.org/10.1016/S0361-9230(98)00102-6

    Article  PubMed  CAS  Google Scholar 

  • Stoffregen TA, Yoshida K, Villard S, Scibora L, Bardy BG (2010) Stance width influences postural stability and motion sickness. Ecol Psychol 22:169–191

    Article  Google Scholar 

  • Stoffregen TA (2011) Le mal des transports comme trouble du mouvement [Motion sickness considered as a movement disorder]. Science & Motricité 74:19–30

    Article  Google Scholar 

  • Stoffregen TA, Chen F-C, Varlet M, Alcantara C, Bardy BG (2013) Getting your sea legs. PLOS ONE 8:e66949. https://doi.org/10.1371/journal.pone.0066949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoffregen TA, Chang C-H, Chen F-C, Zeng W-J (2017). Effects of decades of physical driving on body movement and motion sickness during virtual driving. PLOS One 12(11): e0187120. https://doi.org/10.1371/journal.pone.0187120

    Article  PubMed  PubMed Central  Google Scholar 

  • Thurner S, Mittermaier C, Hanel R, Ehrenberger K (2000) Scaling-violation phenomena and fractality in the human posture control system. Phys Rev E 62:4018–4024

    Article  CAS  Google Scholar 

  • Vaillancourt DE, Newell KM (2002) Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging 23:1–11

    Article  PubMed  Google Scholar 

  • Villard S, Flanagan MB, Albanese G, Stoffregen TA (2008) Postural instability and motion sickness in a virtual moving room. Human Fact 50:332–345

    Article  Google Scholar 

  • Van Emmerik REA, van Wegen EEH (2002) On the functional aspects of variability in postural control. Exerc Sport Sci Rev 30:177–183

    Article  PubMed  Google Scholar 

  • Van Wegen EE, van Emmerik REA, Riccio GE (2002) Postural orientation: age-related changes in variability and time-to-boundary. Hum Mov Sci 21:61–84

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Stoffregen.

Ethics declarations

Conflict of interest

The authors reported no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Walter, H., Curry, C. et al. Postural time-to-contact as a precursor of visually induced motion sickness. Exp Brain Res 236, 1631–1641 (2018). https://doi.org/10.1007/s00221-018-5246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5246-y

Keywords

Navigation