Skip to main content
Log in

Somatosensory modulation of perceptual vestibular detection

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Vestibular-multisensory interactions are essential for self-motion, navigation and postural stability. Despite evidence suggesting shared brain areas between vestibular and somatosensory inputs, no study has yet investigated whether somatosensory information influences vestibular perception. Here, we used signal detection methods to identify whether somatosensory stimulation might interact with vestibular events in a vestibular detection task. Participants were instructed to detect near-threshold vestibular roll-rotation sensations delivered by galvanic vestibular stimulation in one-half of experimental trials. A vibrotactile signal occurred to the index fingers of both hands in half of the trials, independent of vestibular signals. We found that vibrotactile somatosensory stimulation decreased perceptual vestibular sensitivity. The results are compatible with a gain regulation mechanism between vestibular and somatosensory modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GVS:

Galvanic vestibular stimulation

PIVC:

Parieto insular vestibular cortex

SII:

Secondary somatosensory cortex

L-GVS:

Left-anodal and right-cathodal GVS

R-GVS:

Right-anodal and left-cathodal GVS

L-SHAM:

Left-anodal and right-cathodal SHAM

R-SHAM:

Right-anodal and left-cathodal SHAM.

References

  • Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85(2):886–899

    Article  CAS  PubMed  Google Scholar 

  • Bottini G, Paulesu E, Sterzi R, Warburton E, Wise RJ, Vallar G, Frackowiak RS, Frith CD (1995) Modulation of conscious experience by peripheral sensory stimuli. Nature 376(6543):778–781

    Article  CAS  PubMed  Google Scholar 

  • Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002) Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586

    Article  PubMed  Google Scholar 

  • Chen A, DeAngelis GC, Angelaki DE (2010) Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow. J Neurosci 30(8):3022–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day BL, Fitzpatrick RC (2005) Virtual head rotation reveals a process of route reconstruction from human vestibular signals. J Physiol 567(2):591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day BL, Severac Cauquil A, Bartolomei L, Pastor MA, Lyon IN (1997) Human body-segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism. J Physiol 500(3):661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutschländer A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M (2002) Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Map 16(2):92–103

    Article  Google Scholar 

  • Dickstein R, Shupert CL, Horak FB (2001) Fingertip touch improves postural stability in patients with peripheral neuropathy. Gait Posture 14(3):238–247

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30(18):6409–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrè ER, Bottini G, Haggard P (2011) Vestibular modulation of somatosensory perception. Eur J Neurosci 34(8):1337–1344

    Article  PubMed  Google Scholar 

  • Ferrè ER, Bottini G, Haggard P (2012) Vestibular inputs modulate somatosensory cortical processing. Brain Struct Funct 217(4):859–864

    Article  PubMed  Google Scholar 

  • Ferrè ER, Bottini G, Iannetti GD, Haggard P (2013a) The balance of feelings: Vestibular modulation of bodily sensations. Cortex 49(3):748–758

    Article  PubMed  Google Scholar 

  • Ferrè ER, Day BL, Bottini G, Haggard P (2013b) How the vestibular system interacts with somatosensory perception: a sham-controlled study with galvanic vestibular stimulation. Neurosci Lett 550:35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Fink GR, Marshall JC, Weiss PH, Stephan T, Grefkes C, Shah NJ, Zilles K, Dieterich M (2003) Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. Neuroimage 20:1505–1517

    Article  PubMed  Google Scholar 

  • Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J Appl Physiol 96(6):2301–2316

    Article  PubMed  Google Scholar 

  • Fredrickson JM, Figge U, Scheid P, Kornhuber HH (1966) Vestibular nerve projection to the cerebral cortex of the rhesus monkey. Exp Brain Res 2(4):318–327

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Smith CE, Fernández C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the quirrel monkey. J Neurophysiol 51:1236–1256

    Article  CAS  PubMed  Google Scholar 

  • Guldin WO, Grusser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21:256–259

    Article  Google Scholar 

  • Hashimoto T, Taoka M, Obayashi S, Hara Y, Tanaka M, Iriki A (2013) Modulation of cortical vestibular processing by somatosensory inputs in the posterior insula. Brain Inj 27(13–14):1685–1691

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson RM, Burton PC, Ro T (2006) Visually induced feelings of touch. Brain Res 1073:398–406

    Article  PubMed  Google Scholar 

  • Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111:1745–1758

    Article  CAS  PubMed  Google Scholar 

  • Kerkhoff G, Hildebrandt H, Reinhart S, Kardinal M, Dimova V, Utz KS (2011) A long-lasting improvement of tactile extinction after galvanic vestibular stimulation: two sham-stimulation controlled case studies. Neuropsychologia 49(2):186–195

    Article  PubMed  Google Scholar 

  • Lackner JR, DiZio P (2005) Vestibular, proprioceptive, and haptic contributions to spatial orientation. Annu Rev Psychol 56:115–147

    Article  PubMed  Google Scholar 

  • Lackner JR, DiZio P, Jeka J, Horak F, Krebs D, Rabin E (1999) Precision contact of the fingertip reduces postural sway of individuals with bilateral vestibular loss. Exp Brain Res 126(4):459–466

    Article  CAS  PubMed  Google Scholar 

  • Lavie N (2005) Distracted and confused?: Selective attention under load. Trends Cogn Sci 9(2):75–82

    Article  PubMed  Google Scholar 

  • Lavie N, Cox S (1997) On the efficiency of visual selective attention: efficient visual search leads to inefficient distractor rejection. Psychol Sci 8(5):395–396

    Article  Google Scholar 

  • Lopez C (2013) A neuroscientific account of how vestibular disorders impair bodily self- consciousness. Front Integr Neurosci 7

  • Lopez C, Blanke O, Mast FW (2012) The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 212:159–179

    Article  CAS  PubMed  Google Scholar 

  • Macmillan NA, Creelman CD (1991) Signal detection theory: a user’s guide. Cambridge University Press, New York

    Google Scholar 

  • Magnin M, Putkonen PTS (1978) A new vestibular thalamic area: electrophysiological study of the thalamic reticular nucleus and of the ventral lateral geniculate complex of the cat. Exp Brain Res 32(1):91–104

    Article  CAS  PubMed  Google Scholar 

  • Oppenländer K, Utz KS, Reinhart S, Keller I, Kerkhoff G, Schaadt AK (2015) Subliminal galvanic-vestibular stimulation recalibrates the distorted visual and tactile subjective vertical in right-sided stroke. Neuropsychologia 74:178–183

    Article  PubMed  Google Scholar 

  • Sans A, Raymond J, Marty R (1970) Réponses thalamiques et corticales à la stimulation électrique du nerf vestibulaire chez le chat. Exp Brain Res 10:265–275

    Article  CAS  PubMed  Google Scholar 

  • Schmidt L, Utz KS, Depper L, Adams M, Schaadt AK, Reinhart S, Kerkhoff G (2013) Now you feel both: galvanic vestibular stimulation induces lasting improvements in the rehabilitation of chronic tactile extinction. Front Hum Neurosci 7

  • Schwarz DW, Fredrickson JM (1971) Rhesus monkey vestibular cortex: a bimodal primary projection field. Science 172:280–281

    Article  CAS  PubMed  Google Scholar 

  • Utz KS, Dimova V, Oppenländer K, Kerkhoff G (2010) Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – a review of current data and future implications. Neuropsychologia 48:2789–2810

    Article  PubMed  Google Scholar 

  • Vallar G, Sterzi R, Bottini G, Cappa S, Rusconi ML (1990) Temporary remission of left hemianesthesia after vestibular stimulation. A sensory neglect phenomenon. Cortex 26:123–131

    Article  CAS  PubMed  Google Scholar 

  • Vallar G, Bottini G, Rusconi ML, Sterzi R (1993) Exploring somatosensory hemineglect by vestibular stimulation. Brain 116(1):71–86

    Article  PubMed  Google Scholar 

  • Waespe W, Henn V (1978) Conflicting visual-vestibular stimulation and vestibular nucleus activity in alert monkeys. Exp Brain Res 33(2):203–211

    Article  CAS  PubMed  Google Scholar 

  • Wenzel R, Bartenstein P, Dieterich M, Danek A, Weindl A, Minoshima S, Brandt T (1996) Deactivation of human visual cortex during involuntary ocular oscillations: a PET activation study. Brain 119(1):101–110

    Article  PubMed  Google Scholar 

  • Zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex. Neuroimage 60(1):162–169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Royal Society grant and a British Academy grant awarded to ERF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Raffaella Ferrè.

Ethics declarations

Conflict of interest

The Authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabolis, K., Steinberg, A. & Ferrè, E.R. Somatosensory modulation of perceptual vestibular detection. Exp Brain Res 236, 859–865 (2018). https://doi.org/10.1007/s00221-018-5167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5167-9

Keywords

Navigation